
1. More Visualization Results
Figure 1 illustrates the explanations produced by different methods. Compared to baseline methods, our TokenTM accurately
localizes the rationales behind the model’s prediction, resulting in more human-understandable interpretations.
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Figure 1. Visualizations of explanation results. Our method produces more object-centric heatmaps.



2. Detail of Experimental Setup
2.1. Datasets

CIFAR-10 and CIFAR-100. CIFAR-10 and CIFAR-100 [10] are two widely used image classification datasets, each con-
taining 60,000 32 × 32 color images. CIFAR-10 has 10 classes, while CIFAR-100 has a more challenging setting with 100
classes. Both datasets are split into 50,000 training and 10,000 testing images. In this paper, we evaluate explanation methods
on the testing sets.
ImageNet. ImageNet [14] is a large-scale benchmark for image classification. In this work, we evaluate explanation methods
on the validation set, which comprises 50,000 high-resolution images across 1,000 distinct classes. Each class contains
roughly the same number of images, ensuring a balanced benchmark.
ImageNet-Segmentation. ImageNet-Segmentation [8] is a subset of ImageNet with segmentation annotations, containing
4,276 images from 445 categories.

2.2. Implementation of Baseline Methods

2.2.1 Gradient-based Methods

Grad-CAM. Grad-CAM [15] considers the last attention map and utilizes the row corresponding to the [CLS] token, which
is then mapped onto the 2D image space. Different from Raw Attention, Grad-CAM performs multi-head integration using
the gradient. We implement this method on Vision Transformers following previous works [5, 6].

2.2.2 Attribution-based Methods

LRP. LRP [4] starts from the model’s output and propagates relevance scores backward up to the input image. The propaga-
tion adheres to a set of rules defined by the Deep Taylor Decomposition theory [11].
Conservative LRP. Conservative LRP [2] introduces specialized LRP rules for attention heads and layer norms in Trans-
former models. This is designed to implement conservation, a desirable property of attribution-based techniques.
Transformer Attribution. Transformer Attribution [6] is an attribution-based method that is specifically designed for Trans-
former models. It first computes relevance scores via modified LRP and then integrates these scores with attention maps to
produce an explanation.

2.2.3 Attention-based Methods

Raw Attention. Raw Attention [9] extracts the multi-head attention map from the last layer of the model and reshapes the
row corresponding to the [CLS] token into the 2D image space. The explanation result is further obtained by averaging
across different heads.
Rollout. Rollout [1] interprets the information flow within Transformers from the perspective of Directed Acyclic Graphs
(DAGs). It traces and accumulates the attention weights across various layers using a linear combination strategy.
ATTCAT. ATTCAT [13] is a Transformer explanation technique using attentive class activation tokens. It employs a combi-
nation of encoded features, their associated gradients, and their attention weights to produce confident explanations.
GAE. GAE [5] is a general interpretation framework applicable to diverse Transformer architectures. It aggregates attention
maps with corresponding gradients to generate class-specific explanations.

2.3. Evaluation Metrics

Area Under the Curve (AUC) ↓. This metric calculates the Area Under the Curve (AUC) corresponding to the model’s
performance as different proportions of input pixels are perturbed [3]. To elaborate, we first generate new data by gradually
removing pixels in increments of 5% (from 0% to 100%) based on their explanation weights. The model’s accuracy is then
assessed on these perturbed data, resulting in a sequence of accuracy measurements. The AUC is subsequently computed
using this sequence.
Area Over the Perturbation Curve (AOPC) ↑. AOPC [7, 12] measures the changes in output probabilities w.r.t. the
predicted label after perturbations:

AOPC =
1

|K|
∑
k∈K

(p̂(y|x)− p̂(y|xk)), (1)



where K = {0, 5, ..., 95, 100} is a set of perturbation levels, p̂(y|x) estimates the probability for the predicted class given a
sample x, and xk is the perturbed version of x, from which the top k% pixels ranked by explanation weights are removed.
Log-odds score (LOdds) ↓. LOdds [13, 16] averages the difference between the negative logarithmic probabilities on the
predicted label before and after masking k% top-scored pixels over the perturbation set K:

LOdds = − 1

|K|
∑
k∈K

log
p̂(y|x)
p̂(y|xk)

. (2)

The notations are the same as in Eq. (1).
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