
Appendix
For a thorough understanding of our Point Prompt Training
(PPT), we have compiled a detailed Appendix. The table
of contents below offers a quick overview and will guide to
specific sections of interest.
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A. Related Work
3D scene understanding. Deep learning techniques for
understanding 3D scenes using neural networks can be
broadly classified into three categories based on their ap-
proach to handling point clouds: projection-based, voxel-
based, and point-based methods. Projection-based ap-
proaches involve projecting 3D points onto multiple im-
age planes and utilizing 2D CNN-based backbones for fea-
ture extraction [12, 53, 56, 84]. In contrast, voxel-based
methods convert point clouds into regular voxel represen-
tations to facilitate 3D convolutions [63, 83]. The effi-
ciency of these methods is further enhanced through the use

of sparse convolution techniques [16, 28]. Unlike the pre-
vious two, point-based methods operate directly on point
clouds [71, 72, 90, 121] and have recently begun incorpo-
rating transformer-based architectures [30, 107, 122]. Fol-
lowing previous pre-training literatures [35, 108, 110], we
train on the voxel-based SparseUNet [16], which is more
efficient and allows large-scale training.
3D representation learning. Deep neural networks are no-
toriously data-hungry, and scaling up the pre-training data
has become a promising path to learning robust and trans-
ferrable representations. Unlike in 2D vision, where large-
scale curated datasets are readily available [3, 23], data col-
lection and annotation in 3D vision is much more costly, and
the scale of point cloud datasets are quite limited [2, 21].
Regarding 3D representation learning, previous works com-
monly pre-train on a single dataset [32, 35, 77, 78, 103,
110], which limits the potential to benefit from the scaling
law [46]. As the first attempt towards scaling up the pre-
training data, a recent work [108] first explored unsuper-
vised pre-training on merged data (ScanNet [21] and Ark-
itScenes [5]). However, as the distributions of 3D datasets
vary much, naively merging them could be sub-optimal,
which is studied in this work.
Towards large-scale pre-training. In order to scale up
pre-training and learn better representations, two popular
topics in 2D vision is to exploit uncurated data in the
wild [27, 85, 91, 92], and to better utilize the data in
hand [60, 104, 109, 111, 123]. Yet the former is not applica-
ble to 3D data, and the latter has been well-studied in previ-
ous works [35, 108, 110]. The topic of joint learning across
multiple datasets has also been explored in some works re-
lated to 2D scene understanding [47, 95, 99, 117, 127] and
3D object detection [119], but while they focus on direct
evaluation on the target dataset (similar to domain general-
ization [11, 14, 75, 97]). Our work targets more on gener-
alized representation learning in both supervised and unsu-
pervised settings. Moreover, the high variation between 3D
datasets, and the sparse and heavily long-tailed nature, also
add to the difficulty of 3D joint training.
Prompt learning. In an effort to improve the generaliz-
ability of pre-trained models on downstream tasks, prompt-
ing was originally proposed in natural language process-
ing [59]. The prompt templates could be heuristic de-
signed [7, 31, 79], automatically generated [25, 81], or
learned as task-specific parameters [19, 29, 38, 55, 61]. We
rephrase the latter one as prompt learning. In 2D vision,
prompt learning has become a popular parameter-efficient
technique to adapt pre-trained models to specific down-
stream tasks [4, 26, 42, 45, 118, 126]. Our work, instead,
tackles pre-training directly. Prompt learning is regarded as
a dataset-specific adapter to allow the model to resolve the
domain shift between pre-training datasets separately, and
learn the optimal overall representation.
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Figure 4. Categorical alignment approaches.

B. Alternative Designs

In this section, we provide a comprehensive overview and
visual demonstration of the implementation details for pro-
posed alternative designs for Point Prompt Training (PPT).

B.1. Domain Prompt Adapter

To address the challenges of adapting the model to differ-
ent dataset domains, we introduce domain prompt adapters
along with zero-initialization techniques. Fig. 3 serves as
a visual guide, showcasing the implementation of each do-
main prompt adapter discussed in the main paper. Notably,
the zero-initialized layers are highlighted with a green box.
Direct Indiction. Fig. 3a showcases the process of Direct
Injection. This approach inserts a direct injection adapter
at the beginning of each basic block. The domain prompt
is added to the point embedding after undergoing a zero-
initialized linear projection within each direct injection.
Cross Attention. As shown in Fig. 3b, the cross-attention
adapter can be seen as an extension of the direct injection
adapter. The domain prompts ci splits into k independent
prompt embeddings of identical shape, serving as the ref-
erence for cross-attention with each point. Attention oper-
ations [107] occur between query vectors from each point
and key value vectors from the prompt embeddings. The
output, post-projection by a zero-initialized linear layer, is
added to the point embedding.

Prompt-driven Normalization. Fig. 3c illustrates the
Prompt-driven Normalization (PDNorm) approach. In this
case, each normalization layer is replaced with PDNorm,
which enables the adaptation of the backbone to the specific
domain context. PDNorm projects the domain prompt onto
the scale-shift vector using a zero-initialized linear layer,
and these domain-aware vectors are subsequently applied
to the normalized feature embedding.

B.2. Categorical Alignment

To address the issue of inconsistency within the category
space during supervised multi-dataset ergiergistic training,
various categorical alignment strategies are explored in the
main paper. Fig. 4 provides a detailed illustration of these
categorical alignment methods.
Decoupled. Fig. 4a shows the decoupled approach for cat-
egorical alignment. In this method, a separate prediction
head is employed for each dataset. After the shared back-
bone extracts the point embeddings, they are fed into the
prediction head specific to the corresponding dataset’s do-
main. Loss calculation is performed within the category
space corresponding to each domain.
Unionzied. Fig. 4b presents the unified method of categor-
ical alignment. Unlike the decoupled strategy, point em-
beddings are not split based on their respective domains.
Instead, they pass through a unified prediction head that
projects the point representations into the unified category
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ScanNet 20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
S3DIS 13 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Struct.3D 25 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 7. Categorical settings.

Pre-training (joint) Fine-tuning (ScanNet) Fine-tuning (S3DIS)

Config Value Config Value Config Value

optimizer SGD optimizer SGD optimizer SGD
scheduler cosine decay scheduler cosine decay scheduler poly

learning rate 0.5 learning rate 0.5 learning rate 0.1
weight decay 1e-4 weight decay 1e-4 weight decay 1e-4
momentum 0.8 momentum 0.9 momentum 0.9
batch size 24 batch size 12 batch size 12
datasets ScanNet (2) datasets ScanNet datasets S3DIS

S3DIS (1) - -
Struct.3D (4) - -

warmup iters 6k warmup epochs 40 warmup epochs 0
iters 120k epochs 800 epochs 3000

Table 8. Training settings.

space. The logit value of each category is predicted within
this space. However, we still restrict each point prediction
space to its corresponding domain’s category space during
loss calculation.
Language-guided. Fig. 4c demonstrates the language-
guided approach. Here, we leverage a CLIP [74] pre-trained
text encoder to extract the text embedding of each cate-
gory. The alignment process involves aligning each point
representation with the text embedding of its category. This
alignment is facilitated by utilizing InfoNCE [65] loss as the
alignment criterion. Specifically, we calculate the similar-
ity between the point representation and the text embedding.
The resulting similarity matrix is multiplied by a logit scaler
(100) [74] to determine the logit value of each category, and
cross-entropy loss is computed accordingly.

C. Additional Experiments

C.1. Experimental Settings

Data. We conduct PPT joint (pre)-training on three
datasets: ScanNet v2 [21], S3DIS [2], and Struc-
tured3D [124]. The ScanNet v2 dataset consists of 1,613
scene scans reconstructed from RGB-D frames. It is parti-
tioned into 1,201 scenes for training, 312 scenes for valida-
tion, and 100 scenes for benchmark testing. Point clouds in
this dataset are sampled from the vertices of reconstructed
meshes, and each sampled point is assigned a semantic la-
bel from a set of 20 categories. The S3DIS dataset com-
prises 271 rooms from six areas in three distinct build-
ings. Model performance evaluation is typically done us-

ing results from Area 5 and 6-fold cross-validation (result
available in Tab. 11). Unlike ScanNet v2, points in the
S3DIS dataset are densely sampled on the surfaces of the
meshes and annotated into 13 categories. Structured3D is a
synthetic photo-realistic dataset containing 3.5K house de-
signs created by professional designers. It is annotated with
the same set of 40 categories as the NYU Depth V2 [82]
dataset. The dataset is divided into 3,000 scenes for train-
ing, 250 scenes for validation, and 250 scenes for testing.
We further split the 3,500 scenes into approximately 20,000
rooms and project the panoramic image of each room into
a 3D point cloud for training. Following the approach in
Swin3D [116], the frequency of occurrence of the 40 cat-
egories is counted. Categories with frequencies less than
0.001 are filtered out, and end up with a reduced set of 25
categories for perception. Similar to Swin3D, we include
the categories table of the three datasets in Tab. 7 to provide
a clear reference to the category relation across the three
datasets.

Training. The default joint (pre-)training and fine-tuning
setting is in Tab. 8. During joint training, we follow a sam-
pling strategy where the batched point cloud for each iter-
ation was sampled from a single dataset. The sampling ra-
tio is determined based on the best performance necessary
iteration number for each dataset. This approach ensures
that each dataset contributes to the training process in pro-
portion to its optimal performance. Consequently, the total
number of training iterations is equal to the sum of the best
performance necessary iteration numbers for all the datasets
involved as mentioned above. Furthermore, we observe that



Config Value

name SpUNet-S (default) SpUNet-L
patch embed depth 1 1

patch embed channels 32 96
patch embed kernel size 5 5

encode depths [2, 3, 4, 6] [6, 6, 12, 6]
encode channels [32, 64, 128, 256] [96, 192, 384, 768]

encode kernel size 3 3
decode depths [2, 2, 2, 2] [2, 2, 2, 2]

decode channels [256, 128, 64, 64] [768, 384, 192, 192]
decode kernel size 3 3

pooling stride [2, 2, 2, 2] [2, 2, 2, 2]
params 39M 412M

Table 9. Backbone settings.

using a larger batch size leads to more stable performance
during training. Our fine-tuning follows the practice of su-
pervised SparseUNet training setting from Pointcept [17].
Backbone. We validate the effectiveness of our Point
Prompt Training by leveraging SparseUNet [16], optimized
by Pointcept [17] with the SpConv [18] library. The utiliza-
tion of SparseUNet was chosen due to its notable advan-
tages in terms of speed and memory efficiency. The specific
configuration of the backbone is outlined in Tab. 9, with our
primary results based on the widely employed SpUNet-S,
featuring 39 million parameters. Additionally, we explore
the impact of employing a larger-scale backbone with 412
million parameters, denoted as SpUNet-L. The analysis of
PPT’s properties with the larger-scale backbone is discussed
in Sec. C.4.

C.2. Additional Pilot Study

Naive joint-training with varied sampling ratios. In
the pilot study, which is conducted in the main paper, we
perform training experiments by naively pairwise merging
ScanNet, S3DIS, and Structure3D datasets, as well as train-
ing on a combination of all datasets. Subsequently, we eval-
uate the model’s performance on each individual dataset.
The determination of the sampling ratio is based on the nec-
essary iteration number for achieving the best performance
on each dataset. Consequently, we select a sampling ratio
of 4:2:1 for Structure3D, ScanNet, and S3DIS accordingly.

Concerns naturally arise regarding the potential impact
of a larger sampling rate for the Structured3D point cloud.
It is possible that this could lead to the model bias toward
the more frequently witnessed domain, exacerbating perfor-
mance degradation in other datasets rather than improving
naively joint training. To investigate this further, we con-
duct an additional pilot study, exploring different sampling
rates during naively joint training.

Tab. 10 provides an illustration of two representative
sampling ratios: 4:2:1 and 1:1:1. The experimental results
indicate that although increasing the sampling rate of Scan-
Net and S3DIS data with the balanced sampling ratio 1:1:1

slightly alleviated the performance degradation, the nega-
tive transfer effect remained significant in our vanilla set-
ting. These findings further underscore the challenges asso-
ciated with achieving effective collaborative learning across
multiple datasets in the 3D domain.

C.3. Additional Results

S3DIS 6-fold semantic segmentation. Tab. 11 presents the
results of our 6-fold cross-validation semantic segmentation
experiment on the S3DIS dataset. For each fold, we with-
hold one area of S3DIS and perform PPT joint training us-
ing the remaining data along with the ScanNet and Struc-
tured3D datasets. We then evaluate and report the model’s
performance on the withheld area data. The average of these
results represents the 6-fold cross-validation results. No-
tably, Point Prompt Training achieves a significant improve-
ment in SparseUNet performance on this benchmark, with
a notable 12.7% increase, establishing a new SOTA result.
Error bar-supplemented results. As a supplement to the
main paper, we present the full semantic segmentation re-
sults in the main paper in Tab. 12, in which we supplement
the error bar derived from five independent runs. The mean-
std result of the ScanNet test mIoU is not available since
multiple submissions are not allowed.

C.4. Additional Ablation Study

Backbone up-scaling. Tab. 13a presents our investiga-
tion into the impact of scaling up the backbone using
multi-dataset Point Prompt Training (PPT). As a baseline,
we evaluate the performance of SpUNet-S and SpUNet-L
trained solely on the ScanNet dataset. Our observations in-
dicate that, in this setup, increasing the model capacity re-
sults in significant overfitting. However, when PPT is intro-
duced with a larger-scale data source, the issue of overfitting
is mitigated, and a larger-scale backbone yields improved
model performance.

To provide a visual representation of these findings,
Fig. 5 illustrates the loss curves for the training and vali-
dation splits of the four experiments. The entire training
period was evenly divided into 100 epochs, and the average
loss on the training and validation splits was calculated at
the end of each epoch to generate the curves. It is notewor-
thy that SpUNet-L with PPT exhibits a more favorable loss
curve compared to SpUNet-S with PPT, while the opposite
trend is observed in the absence of PPT.

However, it is important to consider that expanding
the depth and dimension of convolution-based models
results in a significant increase in parameters. As a result,
transformer-based methods are better suited for exploring
model capacity expansion. Nevertheless, it is worth noting
that transformer-based methods currently have limitations
in terms of speed and memory consumption. As part of
future work, optimizing the efficiency of transformer-



data ScanNet S3DIS Struct.3D all

ScanNet 72.2 69.5 67.2 69.7
S3DIS 64.7 65.4 63.6 63.5
Struct.3D 73.9 73.7 74.5 72.4

(a) Sampling Ratio 1:1:1

data ScanNet S3DIS Struct.3D all

ScanNet 72.2 71.8 65.9 68.9
S3DIS 64.1 65.4 62.8 63.3
Struct.3D 73.7 74.2 74.5 72.9

(b) Sampling Ratio 4:2:1

Table 10. Naive joint-training with varied sampling ratios.

split Area1 Area2 Area3 Area4 Area5 Area6 PPT Scratch

mIoU 83.01 65.39 87.09 74.13 72.73 86.42 78.13 65.4
mAcc 90.25 75.58 91.83 84.01 78.22 92.47 85.39 -
allAcc 93.48 88.34 94.56 90.84 91.45 94.45 92.19 -

Table 11. S3DIS semantic segmentation 6-fold cross-validation results.

ScanNet [21] ScanNet200 [76] S3DIS Area5 [2]

Methods Params. Val mIoU Test mIoU Val mIoU Test mIoU mIoU mAcc

SparseUNet [16] 39.2M 72.2 73.6 25.0 25.3 65.4 71.7
+ PPT Sup. (joint) 41.0M 75.4 ±0.46 - - - 71.9 ±0.32 77.5 ±0.38
+ PPT Sup. (f.t.) 41.0M 76.2 ±0.18 - 31.7 ±0.22 - 72.4 ±0.21 77.9 ±0.30

Table 12. Error bar-supplemented results.

backbone S L S L
PPT - - ✓ ✓

results 73.4 72.9 75.7 75.8

(a) Backbone Up-scaling

backbone S S
shared - ✓

results 75.3 75.7

(b) Shared Domain Prompt

backbone S S
head Linear LCA

results 73.4 74.2

(c) LCA as Prediction Head
Table 13. Additional ablation.

(a) Training Loss Curve (b) Validation Loss Curve

PPT + SpUNet-S
PPT + SpUNet-L
SpUNet-S
SpUNet-L

PPT + SpUNet-S
PPT + SpUNet-L
SpUNet-S
SpUNet-L

Figure 5. Loss curve.

based backbones after scaling up remains a topic worth
investigating.

Shared domain prompt. In Tab. 13b, validating the effec-
tiveness of globally shared domain prompts in comparison
to independent ones across different backbone blocks. Sim-
ilar to the conclusion in VPT [42], we observe that employ-
ing block-wise independent domain prompts resulted in a
decline in performance. We attribute this to the complex-
ity introduced by having separate domain prompts for each
block, leading to overfitting. This aligns with the obser-
vations from our ablation study in the main paper, where
scaling up prompt dimensions had a similar degradation.

LCA as prediction head. We introduce Language-guided
Categorical Alignment (LCA) as a method to align the
category spaces across multiple datasets with a unified
category-text embedding. This alignment strategy can also
be employed as a segmentation prediction head within a
standard single dataset training process. By considering the
scaled similarity between point embedding and category-
text embedding as the predicted logit value, LCA serves
as an effective prediction head. In Tab. 13c, we com-
pare the performance of the standard linear prediction head
with LCA as the prediction head. The experimental results
demonstrate that LCA can also enhance model performance



Methods Year Val Test

◦PointNet++ [72] 2017 53.5 55.7
◦ 3DMV [20] 2018 - 48.4
◦PointCNN [57] 2018 - 45.8
◦SparseConvNet [28] 2018 69.3 72.5
◦PanopticFusion [64] 2019 - 52.9
◦PointConv [105] 2019 61.0 66.6
◦ JointPointBased [15] 2019 69.2 63.4
◦KPConv [90] 2019 69.2 68.6
◦PointASNL [113] 2020 63.5 66.6
◦SegGCN [54] 2020 - 58.9
◦RandLA-Net [37] 2020 - 64.5
◦ JSENet [39] 2020 - 69.9
◦FusionNet [120] 2020 - 68.8
◦PTv1 [122] 2021 70.6 -
◦FastPointTransformer [67] 2022 72.4 -
◦SratifiedTranformer [50] 2022 74.3 73.7
◦PointNeXt [73] 2022 71.5 71.2
◦PTv2 [107] 2022 75.4 74.2
◦LargeKernel3D [13] 2023 73.5 73.9
◦PointMetaBase [58] 2023 72.8 71.4
◦PointConvFormer [106] 2023 74.5 74.9
◦OctFormer [100] 2023 75.7 76.6
◦Swin3D [116] 2023 75.5 -
• + Supervised [116] 2023 76.7 77.9
◦MinkUNet [16] 2019 72.2 73.6
• + PC [110] 2020 74.1 -
• + CSC [35] 2021 73.8 -
• + MSC [108] 2024 75.5 -
• + GC [96] 2024 75.7 -
• + PPT (Ours) 2024 76.4 76.6
◦OA-CNNs [69] 2024 76.1 75.6
◦PTv3 [17] 2024 77.5 77.9
• + PPT (Ours) 2024 78.6 79.4

Table 14. ScanNet V2 semantic segmentation.

in the context of standard single dataset segmentation tasks.

D. Additional Comparision
In this section, we expand upon the combined results ta-
ble for semantic segmentation (Tab. 3 and Tab. 4) from
our main paper, offering a more detailed breakdown of re-
sults alongside the respective publication years of previous
works. This comprehensive result table is designed to assist
readers in tracking the progression of research efforts in 3D
representation learning. Marker ◦ refers to the result from a
model trained from scratch, and • refers to the result from a
pre-trained model.

D.1. Indoor Semantic Segmentation

We conduct a detailed comparison of pre-training technolo-
gies and backbones on the ScanNet v2 [21] (see Tab. 14)
and S3DIS [2] (see Tab. 15) datasets. ScanNet v2 com-
prises 1,513 room scans reconstructed from RGB-D frames,
divided into 1,201 training scenes and 312 for validation. In
this dataset, model input point clouds are sampled from the
vertices of reconstructed meshes, with each point assigned

Methods Year Area5 6-fold

◦PointNet [71] 2017 41.1 47.6
◦SegCloud [89] 2017 48.9 -
◦TanConv [88] 2018 52.6 -
◦PointCNN [57] 2018 57.3 65.4
◦ParamConv [101] 2018 58.3 -
◦PointWeb [121] 2019 60.3 66.7
◦HPEIN [43] 2019 61.9 -
◦KPConv [90] 2019 67.1 70.6
◦GACNet [98] 2019 62.9 -
◦PAT [115] 2019 60.1 -
◦SPGraph [52] 2018 58.0 62.1
◦SegGCN [54] 2020 63.6 -
◦PAConv [112] 2021 66.6 -
◦PTv1 [122] 2021 70.4 65.4
◦StratifiedTransformer [50] 2022 72.0 -
◦PointNeXt [73] 2022 70.5 74.9
◦PTv2 [107] 2022 71.6 73.5
◦PointMetaBase [58] 2023 72.0 77.0
◦Swin3D [116] 2023 72.5 76.9
• + Supervised [116] 2023 74.5 79.8
◦MinkUNet [16] 2019 65.4 65.4
• + PC [110] 2020 70.3 -
• + CSC [35] 2021 72.2 -
• + MSC [108] 2023 70.1 -
• + GC [96] 2024 72.0 -
• + PPT (Ours) 2024 72.7 78.1
◦PTv3 [17] 2024 73.4 77.7
• + PPT (Ours) 2024 74.7 80.8

Table 15. S3DIS semantic segmentation.

a semantic label from 20 categories (e.g., wall, floor, table).
The S3DIS dataset for semantic scene parsing includes 271
rooms across six areas from three buildings. Following a
common practice [72, 89, 122], we withhold area 5 for test-
ing and perform a 6-fold cross-validation. Different from
ScanNet v2, S3DIS densely sampled points on mesh sur-
faces, annotated into 13 categories. Consistent with stan-
dard practice [72]. We employ the mean class-wise inter-
section over union (mIoU) as the primary evaluation metric
for indoor semantic segmentation.

D.2. Outdoor Semantic Segmentation

We extend our comprehensive evaluation of pre-training
technologies and backbones to outdoor semantic segmenta-
tion tasks, focusing on the SemanticKITTI [6](see Tab. 16)
and NuScenes [8] (see Tab. 17) datasets. SemanticKITTI is
derived from the KITTI Vision Benchmark Suite and con-
sists of 22 sequences, with 19 for training and the remain-
ing 3 for testing. It features richly annotated LiDAR scans,
offering a diverse array of driving scenarios. Each point
in this dataset is labeled with one of 28 semantic classes,
encompassing various elements of urban driving environ-
ments. NuScenes, on the other hand, provides a large-
scale dataset for autonomous driving, comprising 1,000 di-
verse urban driving scenes from Boston and Singapore. For
outdoor semantic segmentation, we also employ the mean



Methods Year Val Test

◦SPVNAS [87] 2020 64.7 66.4
◦Cylinder3D [128] 2021 64.3 67.8
◦PVKD [36] 2022 - 71.2
◦ 2DPASS [114] 2022 69.3 72.9
◦PTv2 [107] 2022 70.3 72.6
◦WaffleIron [70] 2023 68.0 70.8
◦SphereFormer [51] 2023 67.8 74.8
◦RangeFormer [49] 2023 67.6 73.3
◦MinkUNet [16] 2019 63.8 -
• + PPT (Ours) 2024 71.4 -
◦OA-CNNs [69] 2024 70.6 -
◦PTv3 [17] 2024 70.8 74.2
• + M3Net [62] 2024 72.0 75.1
• + PPT (Ours) 2024 72.3 75.5

Table 16. SemanticKITTI semantic segmentation.

Methods Year Val Test

◦SPVNAS [87] 2020 77.4 -
◦Cylinder3D [128] 2021 76.1 77.2
◦PVKD [36] 2022 - 76.0
◦ 2DPASS [114] 2022 - 80.8
◦PTv2 [107] 2022 80.2 82.6
◦SphereFormer [51] 2023 78.4 81.9
◦RangeFormer [49] 2023 78.1 80.1
◦MinkUNet [16] 2019 73.3 -
• + PPT (Ours) 2024 78.6 -
◦OA-CNNs [69] 2024 78.9 -
◦PTv3 [17] 2024 80.4 82.7
• + PPT (Ours) 2024 81.2 83.0

Table 17. NuScenes semantic segmentation.

class-wise intersection over union (mIoU) as the primary
evaluation metric for outdoor semantic segmentation.


