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Dataset Modality Task Train Valid.
Pre-training
BTCV [10] CT pre-train 24 6

TCIA Covid19 [5] CT pre-train 722 49
LUNA [13] CT pre-train 843 45

Downstream
BTCV [10] CT segmentation 24 6

LiTs [2] CT segmentation 100 31
MSD Spleen [1] CT segmentation 32 9
MM-WHS [24] CT segmentation 14 6

BraTs [14] MRI segmentation 387 97
CC-CCII [18] CT classification 2514 1664

Table 1. The details of pre-training and downstream datasets.

In the supplementary materials, we first introduce the
pre-training and downstream datasets we use in our exper-
iments. Then, we present the implementation details of
VoCo, including the settings of pre-processing, pre-training,
and finetuning. Finally, additional experiments are pre-
sented, including ablation studies and experiments on 2D
medical dataset [16].

1. Datasets

Pre-training and downstream datasets. The details of
pre-training and downstream datasets are shown in Table 1.
Specifically, we use BTCV [10] and TCIA Covid19 [5]
totally about 0.8k CT scans for BTCV [10] downstream
task, which aims to conduct fair comparison with previous
works [4, 23]. And we further combine LUNA [13] to scale
the size of pre-training datasets to 1.6k for the other four
downstream tasks.

BTCV dataset. BTCV [10] dataset contains one back-
ground class and thirteen organ classes, i.e., spleen, right
kidney, left kidney, gallbladder, esophagus, liver, stomach,
aorta, inferior vena cava, portal and splenic veins, pan-
creas, left and right adrenal glands. Following the previ-
ous works [4, 23, 22, 15], we split BTCV [10] dataset into
24 scans for training and 6 scans for validation. It is worth
noting that the BTCV [10] dataset is used in pre-training.

LiTs dataset. LiTs [2] dataset releases 131 abdominal
CT Volumes and associated annotations for training and val-
idation. There are two types of labels in LiTs [2]: the liver
and tumor. Following previous works [20, 21, 17], in this

Pre-process settings
Spacing [1.5, 1.5, 1.5]

Norm [amin, amax] [-175.0, 250.0]
Norm [bmin, bmax] [0.0, 1.0]

Roi-Size 64×64×64
Augmentation Random rotate and flip

Pre-training settings
Pre-training steps 100k

Optimizer AdamW
Optimization LR 1e-3

LR schedule warmup cosine
Warmup steps 100

Momentum 0.9
Regularization weight 1e-2

Batch size 4
Sw batch size 4
VoCo Resize 384×384×64

Resize after crop 64×64×64
VoCo n 4×4
VoCo λ 1.0

Finetuning settings
Optimizer AdamW

Optimization LR 3e-4
LR schedule warmup cosine

Warmup steps 100
Momentum 0.9

Regularization weight 1e-5
Batch size 1

Sw batch size 4
Inference sliding window
ROI size 96×96×96

Table 2. Pre-process and training settings in the experiments.

paper, we only utilize the ground truth masks of the liver to
evaluate the effectiveness of various SSL algorithms.

MSD Spleen dataset. MSD Spleen dataset is the 9th
challenge in MSD [1], which is developed for spleen seg-
mentation. Specifically, aiming to conduct fair comparisons
with previous state-of-the-art methods [9, 4, 23], we use 32
scans for training and 9 scans for validation, as shown in
Table 1.

MM-WHS dataset. MM-WHS [24] dataset is also
unseen in the pre-training, which contains 7 classes in-
cluding Left Ventricle, whole aorta, Right Ventricle, Left
Atrium, myocardium of Left Ventricle, Right Atrium, and
Pulmonary Artery. The data splits are also shown in Ta-
ble 1.
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Figure 1. Qualitative visualization of segmentation results for the LiTS [2] and MSD Spleen [1] datasets. Scratch represents the results of
‘from scratch’. The obvious differences are highlighted by blue and red dashed boxes, respectively.

Figure 2. Qualitative visualization of segmentation results for the MM-WHS [24] and BraTs [14] datasets. Scratch represents the results of
‘from scratch’. The obvious differences are highlighted by blue dashed boxes, respectively.

BraTs dataset. BraTs [14] dataset is an MRI dataset,
which has been known as a series of challenges in brain
tumor segmentation. In this paper, we evaluate the ability
of model generalization on the BraTs [14] dataset, since we
pre-train the model with only CT datasets. Specifically, we
perform experiments on the released 387 scans of BraTS
2021 and evaluate the accuracy on the remained 97 scans.
There are three classes in BraTS: whole tumor (WT), tumor
core (TC), and enhancing tumor (ET).

CC-CCII dataset. CC-CCII [18] dataset is designed for
COVID-19 detection, which can be seen as a classification
task. CC-CCII [18] dataset contains 2516 scans for training
and 1644 scans for validation, which includes three classes,
i.e., novel coronavirus pneumonia (NCP), common pneu-
monia (CP), and normal controls (Normal).

2. Implementation Details

Aiming to conduct fair comparisons with previous meth-
ods [21, 17, 9, 23, 8], we adopt comparatively consistent
settings in the experiments. The details of pre-process and
training settings are shown in Table 2. Our implementation
is mainly based on the open-source platform Monai 1 and
Pytorch [11]. We use one NVIDIA A100 GPU for all the
experiments.

Fine-tuning on downstream datasets. The fine-tuning
settings are almost consistent with the pre-training settings,
except for the number of training epochs. Specifically, the
training epochs are set to 3000, 1000, 1000, 1000, 500,
and 100 for BTCV [10], LiTs [2], MSD Spleen [1], MM-

1https://monai.io/

https://monai.io/


λ BTCV MM-WHS
0.5 83.52 90.16
1.0 83.85 90.54
1.5 83.80 90.48

Table 3. Ablation studies of λ on BTCV [10] and MM-WHS [24].

Methods NIH ChestX-ray
From scratch 75.4

MG [22] 77.3
TransVW [6] 77.6

C2L [19] 79.0
SimSiam [3] 79.4
PCRLv1 [20] 79.9
PCRLv2 [21] 81.5

VoCo 82.02

Table 4. Experimental results on the NIH ChestX-ray [16] dataset.
The results are drawn from [21].

Organs Dice Scores(%)
Left Ventricle 91.32
Whole aorta 91.30

Right Ventricle 94.64
Left Atrium 86.89

Myocardium of Left Ventricle 89.16
Right Atrium 96.35

Pulmonary Artery 84.13
Average 90.54

Table 5. Dice Scores of 7 organs on MM-WHS [24].

WHS [24], BraTs [14], and CC-CCII [18], respectively.

3. Experiments
We provide some experiments that are not presented in

the main paper due to the limitation of pages, including ab-
lation studies, 2D medical image analysis, and others.

3.1. Ablation Studies

We further evaluate the settings of the balance parameter
λ for the loss functions, as shown in Table. 3. We also re-
port the Dice Score on the BTCV [10] and MM-WHS [24]
datasets for evaluation. We set λ as 0.5, 1.0, and 1.5 for
ablation studies. As shown in Table. 3, we find that the set-
tings of λ do not matter a lot. Thus, in VoCo, we consider
the importance of loss functions equal and set λ as 1.

3.2. 2D Medical Image Analysis

In the main paper, we evaluate the effectiveness of VoCo
on 3D medical images. To further verify its performance
on 2D medical images, we also conduct experiments on the
NIH ChestX-ray [16] datasets. We follow the consistent
settings of previous works [20, 21], i.e., pre-train on NIH
ChestX-ray and fine-tune on NIH ChestX-ray. Specifically,
for fair comparisons with [20, 21], 60% of data are used for
pre-training and the remaining is used for finetuning. 3D-
UNet [12] is used for experiments. As shown in Table 4,

VoCo can also achieve competitive results on the 2D medi-
cal dataset. We conclude that although the 2D images con-
tain less information than 3D scans, the position priors still
exist, which benefits the training of VoCo.

3.3. Dice Scores of MM-WHS dataset

The Dice Scores of 7 organs on the MM-WHS [24]
dataset are shown in Table 5.

3.4. Validation results on the leaderboard

We have verified the BTCV test results and further eval-
uated the test sets of Flare23 and Amos22 in the pub-
lic leaderboard. Note that aiming to verify the pure ef-
fectiveness, we did not use model ensembling, extra data,
or other tricks. We compare with the strong baseline
SwinUNETR[7] (since with the same network and settings)
in Table 6.

The MSD leaderboard has not been updated for a long
time. Due to the rebuttal emergency, we provide the results
of the offline validation set instead. We strictly follow the
settings of SwinUNETR[7] and the results are shown in Ta-
ble 7.

Method BTCV Flare23 Amos22 (DSC/NSD)
SwinUNETR[7] †84.72 87.84 †88.00/76.15

VoCo 86.44 90.07 89.06/78.86

Table 6. Online test results. †: drawn from previous papers.

Method Task1 Task2 Task3 Task4 Task5
SwinUNETR†[47] 75.13 95.89 81.72 91.98 80.23

VoCo 76.26 96.93 84.98 92.09 82.16
Method Task6 Task7 Task8 Task9 Task10

SwinUNETR†[7] 63.46 64.32 70.54 94.63 44.57
VoCo 67.74 67.85 70.92 96.34 45.17

Table 7. MSD Decathlon. More results will be in the revision.

3.5. More Visualization Results

Visualization results on LiTs [2], MSD Spleen [1], MM-
WHS [24], and BraTs [14] are shown in Fig. 1 and Fig. 2.
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