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Figure 7. camera response curve [2]

6. Details of narrow-band imaging
Corresponding to Footnote 1 in Section 3.1 of the main
paper, Figure 7 displays the typical response curves of
R,G,B filters of a CMOS [2]. The narrow-band filter used
in our experiment has a central wavelength of λ0 = 680 nm,
a bandwidth of ∆λ = 40 nm, and a response curve of f(λ).
The combination of the broad-band R filter and the narrow-
band filter results in a narrower response curve, labeled as
R w/narrow band in Figure 7, which reduces total variance
and produces a less turbulent observation.

7. Details of Turbulence Synthesis
In this section, we present further details of the paired turbu-
lence synthesis, which simulates a simultaneously captured
RGB and narrow-band turbulent image pair from a single
clear i mage.
RGB image. To synthesize an RGB turbulent image, we
first established the physical parameters for images captured
through atmospheric turbulence. These settings broadly fol-
low the configuration in [6], covering common atmospheric
turbulence strengths and camera settings, as shown in Ta-
ble 3. After synthesizing the turbulence, we added noise to
the images. Gaussian noise was introduced with a standard

Table 3. Parameters for turbulence simulation. The notation [·, ·] is
used to indicate uniform sampling on a continuous interval, while
{} is used to denote uniform sampling on a set of discrete values.

D/r0 Distance (m) Focal length (m) F-number

[0.75, 5.25]

[200, 400] [1, 2] {8, 11}
{5.6, 8, 11}

[400, 600] [1, 2.5] {8, 11, 16}
{5.6, 8, 11}

[600, 800] [1, 3] {11, 16}
{8, 11}

deviation in the range of 0.005 to 0.015 for RGB images.
Narrow-band image. We modified the physical parame-
ters and the Zernike scaler inside the P2S simulator [8] to
synthesize a narrow-band image taken at the same time as
the RGB image. This was done by taking into account the
dependence of atmospheric turbulence on wavelength. We
adjusted both the wavelength and the Fried parameter [4]
for the narrow-band images. According to [5], the Fried pa-
rameter r0(λ2) of the narrow-band image can be calculated
from the Fried parameter r0(λ1) of the RGB image at the
same moment using the following formula:

r0(λ2) =

(
N(λ1)λ2

N(λ2)λ1

)6/5

r0(λ1), (1)

where N is defined by Equation 1 in the main paper. Given
that the P2S simulator [8] is based on Zernike polynomi-
als, we also adjusted each Zernike coefficient according to
the relationship between the Zernike coefficients and the
wavelength, as measured in [10]. The new coefficients are
approximately inversely proportional to the wavelength, as
follows:

aj(λ2) =
λ1

λ2
aj(λ1), (2)

where aj is the j-th Zernike coefficient defined in [8].
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Figure 8. Additional visual comparison on synthetic dataset.

Table 4. Quantitative comparison under three different turbulence
strengths, with three turbulence removal methods N-IDR [7], AT-
Net [11], TurbNet [9] and two general image restoration meth-
ods Burstormer [3], FocalNet [1] on synthetic data. All compared
methods are retrained given a pair of RGB and narrow-band im-
ages.

Methods Weak Medium Strong
PSNR SSIM PSNR SSIM PSNR SSIM

N-IDR [7] 22.22 0.6760 20.46 0.5615 19.43 0.4906
Burstormer [3] 22.68 0.7057 21.21 0.6163 20.17 0.5460
AT-Net [11] 22.81 0.7212 22.21 0.6906 21.48 0.6500
FocalNet [1] 24.52 0.8010 22.54 0.7062 21.30 0.6341
TurbNet [9] 24.94 0.8311 22.88 0.7396 21.67 0.6762

NB-GTR 26.93 0.8839 24.71 0.8151 23.31 0.7589

After the turbulence simulation, we adjusted the RGB
channels of the narrow-band image by giving them coeffi-
cients of 0.95, 0.04, and 0.01, respectively. This adjustment
was done to make the simulation results match the aver-
age distribution that was determined through actual narrow-
band photography. Lastly, Gaussian noise was added to

the images, with a standard deviation ranging from 0.015
to 0.025 for narrow-band images, to create a noisier image
than the RGB image.

8. Additional Experimental Results
In this section, we provide more visual comparison of
our NB-GTR with three turbulence removal methods N-
IDR [7], AT-Net [11], TurbNet [9] and two general im-
age restoration methods Burstormer [3], FocalNet [1], as
is shown in Figure 8. We conducted further research to de-
termine the effect of turbulence strength on the efficacy of
turbulence removal methods on our synthetic dataset. The
results are shown in Table 4, where the turbulence strength
is divided into three categories based on the values of D/r0:
0.75− 2.25 for weak, 2.25− 3.75 for medium, and 3.75−
5.25 for strong perturbations. Our method proved to be
more effective than the other approaches.
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