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A. Additional Details of WildRGB-D Dataset
Video types distribution Our dataset comprises objects
paired with their respective videos, with each object being
associated with three recorded videos. One of these videos
is labeled as the Single object video, while the classification
of the other two videos is contingent on the nature of the
object. In our data collection strategy, we selectively opt
for certain object categories to capture Hand-object video,
excluding categories where objects, such as toy trains or
buses, lack meaningful interactions with hands. Within our
chosen categories, no more than 10 percent of objects fea-
ture a single clip of Hand-object video, and the remaining
videos consistently fall into the category of Multi-object
video.

Video recording details To ensure comprehensive 360-
degree recording with minimal camera shaking and motion
blurs in our videos, we implement a turntable hidden be-
neath the table, out of the camera’s view. This turntable
features an adjustable arm that can vary the pitch angle and
distance. At the end of the arm, there’s a mount for an
iPhone, facilitating recording. During filming, we can ro-
tate the arm, ensuring a smooth and uniform rotation for
stable footage. To enhance dataset diversity, we deliberately
choose various radii and pitch angles during recording. Ad-
ditionally, for the background of objects, we deliberately
select diverse scenarios to further enrich the variability of
our dataset. The average video length is over 600 frames.

Dataset mask annotation details. With Grounding-
DINO [8] to get prompts (bounding box) for SAM [6], ev-
ery generated mask will be examined again by the annota-
tors to ensure mask quality. If the mask is wrong, we will la-
bel the mask manually by explicit clicks in the image, which
serve as click prompts for SAM, and generate the final cor-
rect mask. This generates almost the same quality of results
as manually labeling all masks but is much more efficient.

Video quality examination We systematically exclude
videos that fail to meet our predefined criteria. Specifically,
any videos lacking a complete 360-degree recording are
eliminated from consideration. For the quality of captured
depths, errors of Apple’s TrueDepth Camera only reach up
to 5% of the target distance, so the quality of depths is
quite good in our collected RGB-D videos. After apply-
ing Simultaneous Localization and Mapping (SLAM) pro-

COLMAP Result RGB RGB + Depth Sup
COLMAP RGBD SLAM COLMAP RGBD SLAM

79/138 (57.2%) Fail N/A 29.85 N/A 30.86
59/138 (42.8%) Success 31.10 31.33 31.75 31.38

Table 1. The results of view synthesis using different ways to
estimate camera poses. We report the PSNR which is evaluated
with NeuS2 [14].

cessing to determine camera poses, we discard videos that
exhibit an unreasonable camera trajectory. This evaluation
is conducted by meticulous examination of point cloud re-
constructions and visualized camera trajectories. Through
this rigorous quality control process, we guarantee that our
retained videos exhibit a consistently high level of quality.

Evaluation of pose quality from COLMAP and SLAM
To evaluate the accuracy of camera poses estimated
from COLMAP [11] and RGBD SLAM [4, 12], we run
NeuS2 [14] with camera poses estimated from them, and
report the PSNR of view synthesis in Tab. 1. Column 2
and 3 show results using only RGB supervision; Column 3
and 4 use both RGB and depth as supervision. We randomly
choose three single object scenes from every category in our
dataset, resulting in 138 scenes. We find COLMAP fails
in 57.2% of the scenes on camera pose estimation, which
RGBD SLAM can succeed in all cases. This shows the
significance of how much depth can help in camera pose
estimation. In the cases where COLMAP fails (1st row),
adding depth supervision can boost view synthesis by a
large margin with RGBD SLAM cameras. We report N/A
with COLMAP cameras as the estimations fail. In 2nd row
where COLMAP works, all ablations lead to similar results.
This suggests depth is very useful in challenging scenes that
cover a significant number of data.

Personal data and human subject During our dataset
collection process, we enlisted the assistance of hired work-
ers to record videos on our behalf. In a small fraction of
these videos, the workers inadvertently appear, featuring
their hands or partial bodies. Importantly, we have secured
explicit consent from these individuals to include these spe-
cific portions of the videos in our dataset. This ensures that
the inclusion of worker-related content is both intentional
and authorized, maintaining transparency and adherence to
ethical standards in our dataset compilation.



B. Additional Experiment Details
B.1. Novel view synthesis

Dataset splits In the context of Single-Scene Novel View
Synthesis (NVS), where NeRF-based methods [2, 9, 10]
are evaluated, we employ a randomized approach wherein
we select ten scenes at random from each category. Sub-
sequently, we uniformly subsample each video to a fixed
length of 100 frames and further extract 20 percent of these
frames for validation purposes. For Cross-Scene NVS ex-
periments, we designate the same ten scenes chosen for the
Single-Scene NVS as the test scenes within each category.
The remaining scenes in each category are then utilized for
training. During evaluations, we exclusively test on the
20 percent of images sampled from these test video clips,
mirroring the methodology employed in Single-Scene NVS
experiments. The remaining images serve as source views
for synthesizing renderings in the context of Generalizable
Neural Radiance Fields (NeRFs) [3, 13, 15]. Notably, for
every method, we consistently employ three source views
for the synthesis of renderings, which are chosen in a de-
terministic way. Difficulty level division in Cross-Scene
NVS experiments is caused by various object shapes, back-
grounds, and the number of training videos in each category.

Training details For every NeRF-based method, we
largely follow its original training process. NeRF [9], Mip-
NeRF 360 [2] and Instant-NGP [10] are all trained with
30k iterations using their default hyper-parameters. Pixel-
NeRF [15], MVSNeRF [3] and IBRNet [13] are trained us-
ing default settings, but with different iterations and epochs.
Pixel-NeRF [15] is trained in 200 epochs, MVSNeRF [3]
and IBRNet [13] are trained with 100k iterations. We en-
sure enough training time for every method to be correctly
evaluated.

B.2. Camera pose estimation

Dataset splits Our dataset, consisting of 46 categories, is
systematically divided into 27 training categories and 19
test categories. During the training phase, we exclusively
utilize 70 percent of the videos from the training categories,
reserving the remaining 30 percent for validation. The met-
rics derived from this validation process are reported under
the designation of “seen” categories. Evaluation results on
the test categories are distinctly reported as “unseen” cat-
egories. This partitioning strategy ensures a robust assess-
ment of model performance on both familiar and novel cat-
egories, contributing to a comprehensive evaluation frame-
work. For every video, we uniformly subsample each video
to a fixed length of 100 frames as well.

Training details We follow the training procedure and
hyper-parameters in RelPose [17] and RelPose++ [7], with

different iterations: RelPose [17] is trained with 100k itera-
tions and RelPose++ [7] with 400k iterations.

B.3. Object surface reconstruction

Implementation details For Instant-NGP [10], we adopt
its re-implementation in [1]. We apply an additional mask
loss. To be more specific, for every casting ray r(t) =
o + td from the camera center o through the pixel center
in direction d, Instant-NGP samples a set of 3D points {xi}
along the ray. After querying respective density {σi} of the
points {xi}, we calculate the opacity of the ray by

∑
i wi.

We want to make it aligned with the mask mr of that ray by
the mask loss Lmask =

∑
r ∥

∑
i wi −mr∥22. We addition-

ally add depth loss to Instant-NGP in RGB-D surface recon-
struction. For Neusfacto [16], we follow their implementa-
tions in SDFStudio, applying their proposed mask loss and
sensor depth loss.

Training details We train Instant-NGP [10] with 30k iter-
ations. For RGB surface reconstruction in Neusfacto [16],
we train with a longer 60k iterations. RGB-D surface re-
construction in Neusfacto [16], we train with only 10k iter-
ations because of its fast convergence speed.

B.4. Object 6D pose estimation
Training details We choose three common categories of
our dataset and Wild6D [5] for category-level 6D pose esti-
mation. We don’t subsample our video here. We train every
model following [18] for 20k iterations with default hyper-
parameters.
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