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Supplementary Material

A. Overview

In this supplementary material, we provide more experi-
ments on the KITTI360Pose dataset [12] to demonstrate
the effectiveness of our Text2Loc and show more insights
we gathered during the development. We first present thor-
ough ablation experiments to study the impact of the pro-
posed CCAT on the fine localization performance in Sec. B.
In Sec. C, we provide qualitative results of top-3 candi-
date submaps retrieved and localization performance when
changing one sequence in the query textural descriptions.
Next, we describe implementation details about our net-
work architecture in Sec. D and analysis of the proposed
PMC module in Sec. E. Finally, Sec. F shows more visual-
izations of point cloud localization from text descriptions.

B. More analysis of Cascaded Cross-Attention
Transformers

In this section, we first explore the performance of dif-
ferent numbers of Cascaded Cross-Attention Transformers
(CCAT) in our fine localization network. We further provide
a comparison to study the difference between our CCAT and
Hierarchical Cross-Attention Transformer (HCAT) in [37].

Number of CCAT. We insert CCAT one by one before the
MLP layer in Text2Loc. ’0’ means using a single Cross At-
tention Transformer (CAT) to fuse text and 3D point cloud
features. Table 7 shows the localization performance of our
Tex2Loc with different numbers of CCAT units. As seen
from the table, Text2Loc achieves the best performance
with 2 CCAT units. When the number expands to 3, the
performance degrades. This implies that the text-submap
feature fusion is sufficient with fewer CCAT units. On the
other hand, when the number is set to 1, the performance
decreases. Therefore, we set the fixed number of CCAT as
2 in our network.

Difference with HCAT. Recent work CASSPR [37] has
explored the integration of 3D point-wise features with
voxelized representations through a designed Hierarchical
Cross-Attention Transformer (HCAT). In HCAT, two par-
allel Cross Attention Transformers (CAT1 and CAT2) pro-
cess inputs from different branches (point and voxel), each
serving as query and key respectively. In contrast, our Cas-
caded Cross-Attention Transformer (CCAT) employs a se-
quential, cascaded structure to merge text and point cloud
cross-modal information. Notably, in our CCAT, the sec-
ond CAT utilizes the output of the first CAT as its key
and value, distinguishing it from the parallel architecture
of HCAT. Table. 8 presents a performance comparison of

Localization Recall (ϵ < 5m) ↑
Number of CCAT Validation Set Test Set

k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

0 0.28 0.57 0.66 0.26 0.51 0.60

1 0.36 0.67 0.77 0.32 0.59 0.69

2 0.37 0.68 0.77 0.33 0.61 0.71

3 0.35 0.67 0.77 0.32 0.59 0.69

Table 7. Localization performance for Text2Loc with different
numbers of CCAT on the KITTI360Pose benchmark. ’0’ means
using a single Cross Attention Transformer (CAT) to fuse text and
3D point cloud features.

Localization Recall (ϵ < 5m) ↑

Methods Validation Set Test Set

k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

HCAT [37] 0.35 0.66 0.75 0.32 0.59 0.68

CCAT (Ours) 0.37 0.68 0.77 0.33 0.61 0.71

Table 8. Performance comparison of different modules within our
Text2Loc architecture on the KITTI360Pose benchmark.

different modules within our Text2Loc architecture. Utiliz-
ing the proposed CCAT, we observed an approximate 4%
increase in retrieval accuracy at top 10 on the test set. This
table demonstrates a consistently superior performance of
our CCAT compared to the HCAT used in [37].
Motivation of CCAT. The motivation for the CCAT mod-
ule in fine localization arose from the challenge of target
position regression based on the text descriptions. Encoding
accurate textual features is crucial for regression since the
model directly predicts target positions, without any text-
instance matcher. We thus design a cascade structure to
enhance text features with the information from retrieved
point clouds. The HCAT [37] module, in contrast, aims
to compensate for the quantization losses for the LiDAR-
based place recognition task. HCAT should ensure that each
branch is useful in isolation, thus preventing one branch
from dominating over the other.

C. Visualization of robustness analysis
Fig. 7 visualizes some qualitative results for Sec. 6.4. For
each instance, we display the original query text descrip-
tions along with the top 3 retrieved submaps and their final
predicted locations at the top, followed by modified queries
(highlighted in red) and their results at the bottom. In the
first example, we cannot find the positive submaps in the
top-3 matches, leading to a complete localization failure. In
the second example, even though we identify the positive



The pose is on top of a gray road. 
The pose is east of a beige sidewalk. 
The pose is south of a beige wall. 
The pose is west of a black fence. 
The pose is west of black vegetation. 
The pose is north of a black terrain.

Text 
descriptions Top 1 Top 2 Top 3

Fine 
localization

Global place recognition

The pose is on top of a gray road. 
The pose is east of a beige sidewalk. 
The pose is on top of a bright-gray vegetation.
The pose is west of a black fence. 
The pose is west of black vegetation.
The pose is north of a black terrain.

The pose is on top of black vegetation. 
The pose is north of black vegetation. 
The pose is east of a gray-green lamp.
The pose is south of § dark-green sidewalk. 
The pose is north of a black trash bin. 
The pose is east of a dark-green box.

The pose is on top of black vegetation. 
The pose is north of black vegetation. 
The pose is east of a dark-green box.
The pose is south of a dark-green sidewalk.
The pose is north of a black trash bin. 
The pose is east of a dark-green box.

Figure 7. Robust analysis of our Text2Loc on the KITTI360Pose Benchmark. We present the top-3 retrieved submaps in global place
recognition and the final predicted location for both the original query text descriptions and the modified queries (in red).

submaps in the global place recognition, the exact localiza-
tion is still off. The results are consistent with our expecta-
tion that accurate text embedding is essential for predicting
the target location in fine localization.

D. Implementation Details

We train the model with Adam optimizer for the text-
submap global place recognition with a learning rate (LR)
of 5e-4. The model is trained for a total 20 epochs with
batch size 64, and we follow a multi-step training schedule
wherein we decay LR by a factor of 0.4 at each 7 epoches.
The temperature coefficient τ is set to 0.1. We consider
each submap to contain a constant 28 object instances. The
intra- and inter-text encoder in the text branch has 1 encoder
layer respectively. We utilize PointNet++ [20] from [12]
to encode every individual instance within the submap. In
all quantitative results relating to global place recognition,
we adopt the definition of the ground truth (GT) submap
as [12], where it refers to the submap in the database that
contains textual descriptions of targets, with its center point

closest to the target. For the fine localization network, we
train the model with an LR of 3e-4 for 35 epochs with batch
size 32. To make a fair comparison, we set the embedding
dimension for both text and submap branch as 256 in global
place recognition and 128 in fine localization. The code is
available for reproducibility.

Transformer in global place recognition. Formally, each
transformer with max-pooling in the proposed intra- and
inter-text encoder can be formulated as follows:

FT = Max-pooling ◦ Transformer(Q,K,V)

= Max-pooling◦
[
F̃T + FFN

(
F̃T

)]
,

F̃T = Q+MHSA (Q,K,V) ,

(6)

where Q = K = V = Ft ∈ RNt×d represent the query,
key, and value matrices.

Within the MHSA layer, self-attention is conducted by
projecting Q, K, and V using h heads, with our choice be-
ing h = 4. More precisely, we initially calculate the weight



matrix using scaled dot-product attention [32], as in Eq. 7:

Attention (Q,K,V) = Softmax

(
Q ·KT

√
dk

)
V, (7)

Subsequently, we compute the values for the h heads and
concatenate them together as follows:

Multi-Head(Q,K,V) = [ head1, . . . , headh]WO, (8)

headi = Attention
(
QWiQ,KWiK ,VWiV

)
, (9)

where WQ,K,V,O
i denote the learnable parameters.

PMC

Loss of trash bin Loss of parking Origin submap

Figure 8. Visualization of lost instances due to our PMC.

E. Analysis of PMC module
PMC can be seen as a data augmentation. However, this
augmentation is not suitable for the previous text-instance
matcher in Text2Pos [12] and RET [33] since PMC can lead
to the loss of object instances in certain submaps (see Fig. 8
above); thereby, solely integrating the PMC into Text2Pos
results in performance degradation. Conversely, adding
more training submaps by PMC benefits our Text2Loc since
we adopt a matching-free strategy without any text-instance
matches.

F. More visualization results
In this section, we visualize more examples of correct point
cloud localization from text descriptions and failure cases
in Fig. 9. For (a) and (b), Text2Loc successfully retrieves
all positive submaps within the top-3 results during global
place recognition. We observe that these top-3 retrieved
submaps display a high degree of semantic similarity to
both the ground truth and each other. In cases of (c) - (e),
despite some of the top-3 submaps being negatives retrieved
by our text-submap place recognition, Text2Loc effectively
localizes the text queries within a 5m range after applying
the fine localization network. It demonstrates our fine local-
ization network can improve the localization recall, which
turns such wrong cases in place recognition into a success-
ful localization.

We also present some failure cases where all retrieved
submaps are negative. For example, in case (g), the query
text description contains an excessive number of objects of
the same category ’Pole’. This description ambiguity poses

a significant challenge to our place recognition network,
leading to the retrieval of incorrect submaps. In the future,
We hope to investigate more precise and accurate text de-
scriptions, like integrating specific landmark information,
including street names, zip codes, and named buildings, into
text-based localization networks.



The pose is on top of a gray-green road. 
The pose is north of a gray sidewalk. 
The pose is west of a black wall.
The pose is south of a green fence.
The pose is south of a dark-green pole.
The pose is east of a dark-green traffic light.

The pose is on top of a gray road. 
The pose is south of a gray parking. 
The pose is west of a black fence. 
The pose is east of black vegetation. 
The pose is east of a gray-green terrain. 
The pose is west of a dark-green building. 

The pose is on top of a gray road. 
The pose is north of a gray sidewalk. 
The pose is east of a dark-green fence. 
The pose is west of a green terrain. 
The pose is south of a black pole. 
The pose is north of a dark-green terrain. 

The pose is on top of black vegetation. 
The pose is north of black vegetation. 
The pose is east of a dark-green box.
The pose is south of a dark-green sidewalk.
The pose is north of a black trash bin. 
The pose is east of a dark-green box. 

The pose is on top of a gray road. 
The pose is north of a dark-green terrain. 
The pose is north of a green road. 
The pose is south of a beige sidewalk. 
The pose is south of green vegetation. 
The pose is north of gray vegetation. 

The pose is north of a gray road. 
The pose is east of a gray pole. 
The pose is west of a dark-green pole. 
The pose is south of a dark-green pole. 
The pose is north of a gray road. 
The pose is east of a gray pole. 
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Ground
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(d)

(a)
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(g)

Global place recognition

The pose is on top of a gray road. 
The pose is north of a gray sidewalk. 
The pose is south of a green parking. 
The pose is south of black vegetation. 
The pose is north of a black terrain. 
The pose is west of a black pole. 

(h)

The pose is on top of a gray road. 
The pose is north of a gray sidewalk. 
The pose is south of a gray-green parking.
The pose is west of gray vegetation.
The pose is east of a gray pole. 
The pose is south of gray vegetation. 

(f)

Figure 9. Qualitative localization results on the KITTI360Pose dataset: In global place recognition, the numbers in top3 retrieval submaps
represent center distances between retrieved submaps and the ground truth. Green boxes indicate positive submaps containing the target
location, while red boxes signify negative submaps. For fine localization, red and black dots represent the ground truth and predicted target
locations, with the red number indicating the distance between them.


