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A. Proofs and Derivations
In this section, we will prove the theorems claimed in the main manuscript.

A.1. Proof of Theorem 1

Theorem 1. Assume that ϵθ is the ground-truth noise prediction model, with ∥ϵθ(x, t) − ϵθ(y, t)∥2 ⩾ 1
C ∥x − y∥2 for any

t and some C > 0. Denote by xgt
ti the ground-truth intermediate result at ti starting from x̃tK , and by fθ,τ a deterministic

sampler. We have the following inequality:

Ex0,ϵ[∥x̃ti−1
− xgt

ti−1
∥2]

⩽C
( K∑

n=i

(
Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x̃ti , ti)∥22

]) 1
2

+

K∑
l=i

E[∥ϵθ(xgt
tl
, tl)− ϵθ(x

gt
tl−1

, tl−1)∥2]
)
. (S1)

Proof of Theorem 1. By the assumption, we have

Ex0,ϵ[∥x̃ti−1
− xgt

ti−1
∥2] ⩽ CEx0,ϵ[∥ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x

gt
ti−1

, ti−1)∥2] (S2)

Define ei−1 = ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x
gt
ti−1

, ti−1). Then we can easily derive that

ei−1 =ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x̃ti , ti) + ϵθ(x̃ti , ti)− ϵθ(x
gt
ti , ti)

+ ϵθ(x
gt
ti , ti)− ϵθ(x

gt
ti−1

, ti−1) (S3)

=ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x̃ti , ti) + ei + ϵθ(x
gt
ti , ti)− ϵθ(x

gt
ti−1

, ti−1) (S4)

=

K−1∑
n=i

(
ϵθ(fθ,τ (x̃tn , τn), tn−1)− ϵθ(x̃tn , tn)

)
+ eK−1

+

K−1∑
l=i

(
ϵθ(x

gt
tl
, tl)− ϵθ(x

gt
tl−1

, tl−1)
)
, (S5)

where Eq. (S4) is due to x̃ti = fθ,τ (x̃ti+1
, τi+1). Since xgt

tK = x̃tK , we have

eK−1 = ϵθ(fθ,τ (x̃tK , τK), tK−1)− ϵθ(x̃tK , tK) + ϵθ(x
gt
tK , tK)− ϵθ(x

gt
tK−1

, tK−1). (S6)
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Then we have

ei−1 =

K∑
n=i

(
ϵθ(fθ,τ (x̃tn , τn), tn−1)− ϵθ(x̃tn , tn)

)
+

K∑
l=i

(
ϵθ(x

gt
tl
, tl)− ϵθ(x

gt
tl−1

, tl−1)
)
, (S7)

and

E[∥ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x
gt
ti−1

, ti−1)∥2] (S8)

⩽
K∑
n=i

E[∥ϵθ(fθ,τ (x̃tn , τn), tn−1)− ϵθ(x̃tn , tn)∥2]

+

K∑
l=i

E[∥ϵθ(xgt
tl
, tl)− ϵθ(x

gt
tl−1

, tl−1)∥2] (S9)

⩽
K∑
n=i

Ln(τn)
1
2 +

K∑
l=i

E[∥ϵθ(xgt
tl
, tl)− ϵθ(x

gt
tl−1

, tl−1)∥2], (S10)

where Eq. (S10) is due to Cauchy inequality. Combine Eq. (S2) and Eq. (S10), we prove the theorem.

A.2. Proof of Theorem 2

Theorem 2. Assume that ϵθ is the ground-truth noise prediction model. The loss function of TimeTuner resembles that of
the original DPM, i.e., for i = K,K − 1, · · · , 1, the optimal τi holds the following property:

argmin
τi

Li(τi)

= argmin
τi

Ex0,ϵ[∥ϵθ(fθ,τ (x̃ti , τi), ti−1)

− x̃ti − αtix0

σti

∥22]. (S11)

We first claim the following lemmas which are crucial for the proof of Theorem 2.

Lemma 1. Let x0 ∼ q0(x0), and q0t(xt|x0) = N (xt;αtx0, σ
2
t I). Denote by qt(xt) the marginal distribution of xt. Then

we have ∇ log qt(xt) = −E
[
xt−αtx0

σ2
t

|xt

]
.

Proof of Lemma 1. According to the definition of qt(xt), one can notice that ∇ log qt(xt) = ∇xt
log

∫
q0(x0)q0t(xt|x0)dx0.

Then we have

∇ log qt(xt) =

∫
q0(x0)∇xt

q0t(xt|x0)dx0∫
q0(x0)q0t(xt|x0)dx0

(S12)

=

∫
q0(x0)q0t(xt|x0)∇xt log q0t(xt|x0)dx0

qt(xt)
(S13)

=

∫
q0(x0)q0t(xt|x0)

qt(xt)
∇xt log q0t(xt|x0)dx0 (S14)

=

∫
q(x0|xt)∇xt log q0t(xt|x0)dx0 (S15)

= E[∇xt
log q0t(xt|x0)|xt] (S16)

= −E
[
xt − αtx0

σ2
t

|xt

]
, (S17)

where Eq. (S15) comes from Bayes’ rule.

Lemma 2. Let g(xt), h(xt,x0) be integrable functions, then the following equality holds.

Eq(xt)[⟨g(xt),Eq(x0|xt)[h(xt,x0)|xt]⟩] = Eq(xt)[⟨g(xt), h(xt,x0)⟩]. (S18)



Proof of Lemma 2. Note that

Eq(xt)[⟨g(xt),Eq(x0|xt)[h(xt,x0)|xt]⟩] =
∫

⟨g(xt),Eq(x0|xt)[h(xt,x0)|xt]⟩p(xt)dxt (S19)

=

∫
⟨g(xt),

∫
h(xt,x0)p(x0|xt)dx0⟩p(xt)dxt (S20)

=

∫ ∫
⟨g(xt), h(xt,x0)⟩p(x0|xt)p(xt)dx0dxt (S21)

=

∫ ∫
⟨g(xt), h(xt,x0)⟩p(x0,xt)dx0dxt (S22)

= Eq(xt)[⟨g(xt), h(xt,x0)⟩]. (S23)

where Eq. (S21) is by linearity of integral.

Then we start to prove the Theorem 2 as below.

Proof of Theorem 2. Given the assumption that ϵθ is the ground-truth noise prediction model, we have ϵθ(xt, t) = E[xt−αtx0

σt
|xt]

from Lemma 1. Then we have

Li(τi) = Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)− ϵθ(x̃ti , ti)∥22

]
(S24)

=Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)∥22 + ∥ϵθ(x̃ti , ti)∥22

]
− 2Ex0,ϵ [⟨ϵθ(fθ,τ (x̃ti , τi), ti−1), ϵθ(x̃ti , ti)⟩] (S25)

=Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)∥22 + ∥ϵθ(x̃ti , ti)∥22

]
− 2Ex0,ϵ

[〈
ϵθ(fθ,τ (x̃ti , τi), ti−1),E

[
x̃ti − αtix0

σti

|x̃ti

]〉]
(S26)

=Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)∥22 + ∥ϵθ(x̃ti , ti)∥22

]
− 2Ex0,ϵ

[〈
ϵθ(fθ,τ (x̃ti , τi), ti−1),

x̃ti − αtix0

σti

〉]
(S27)

=Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)−

x̃ti − αtix0

σti

∥22
]

, + Ex0,ϵ

[
∥ϵθ(x̃ti , ti)∥22 − ∥ x̃ti − αtix0

σti

∥22
]
, (S28)

where Eq. (S27) is due to Lemma 2. Since ∥ϵθ(x̃ti , ti)∥22 − ∥ x̃ti
−αti

x0

σti
∥22 is independent with τi, we have

argmin
τi

Li(τi) = argmin
τi

Ex0,ϵ

[
∥ϵθ(fθ,τ (x̃ti , τi), ti−1)−

x̃ti − αtix0

σti

∥22
]
. (S29)

Remark 1. Note that the objective of the original DPM has the following form:

Ex0,ϵ

[
∥ϵθ(xti , ti)− ϵ∥22

]
= Ex0,ϵ

[
∥ϵθ(xti , ti)−

xti − αtix0

σti

∥22
]
, (S30)

which has a similar form as the objective in Theorem 2.

B. Pseudo-code of Training Process
Recall that we introduce two different training strategies for the proposed TimeTuner, i.e., the sequenatial strategy and the
parallel strategy. We have proved the equivalence of the two training strategies, and analyzed the performance difference
between the two strategies upon DDIM [2]. In this part, we provide the pseudo-codes of the two training strategies in
Algorithm S1 and Algorithm S2.



Algorithm S1 Pseudo-code of sequential training strategy of TimeTuner in a PyTorch-like style.

1 import torch
2

3

4 def sequential_training_loss(x_0, t_list, tau_list, i, tau_i, F, E):
5 """Defines the forward process of one sequential training step.
6

7 Args:
8 x_0: Data inputs, with shape [B, C, H, W].
9 t_list: The preset timestep trajectory from 0 to T.

10 tau_list: The list consist of previously achieved re-aligned timesteps from tau_K to tau_ip1.
11 i: The index of current timestep tau.
12 tau_i: The timestep to re-align.
13 F: The DE solver to denoise the input ’x’ from timestep ’t’ to timestep ’s’ using re-aligned input condition ’

tau’.
14 E: The noise prediction model with input ’x’ and ’t’.
15 """
16 # Compute the x_T at timestep T.
17 z_T = torch.randn_like(x_0)
18 x_T = alpha_T * x_0 + sigma_T * z_T
19

20 # Compute the denoised intermediate x_t_i
21 x = x_T
22 for tau, t, t_prev in zip(tau_list, t_list[::-1], t_list[-2::-1]):
23 x = F(x, t, t_prev, tau)
24 x_t_i = x
25

26 # Get the current and the previous timestep.
27 t_i, t_im1 = t_list[i], t_list[i - 1]
28

29 # Compute the denoised intermediate x_t_im1 with tau_i
30 x_t_im1 = F(x_t_i, t_i, t_im1, tau_i)
31

32 # Learn the translator.
33 loss = (E(x_t_im1, t_im1) - E(x_t_i, t_i)).square().mean()
34

35 return loss

Algorithm S2 Pseudo-code of parallel training strategy of TimeTuner in a PyTorch-like style.

1 import torch
2

3

4 def parallel_training_loss(x_0, t_list, i, tau_i, F, E):
5 """Defines the forward process of one parallel training step.
6

7 Args:
8 x_0: Data inputs, with shape [B, C, H, W].
9 t_list: The preset timestep trajectory from 0 to T.

10 i: The index of current timestep tau.
11 tau_i: The timestep to re-align.
12 F: The DE solver to denoise the input ’x’ from timestep ’t’ to timestep ’s’ using re-aligned input condition ’

tau’.
13 E: The noise prediction model with input ’x’ and ’t’.
14 """
15 # Get the current and the previous timestep.
16 t_i, t_im1 = t_list[i], t_list[i - 1]
17

18 # Compute the x_t_i at timestep t_i.
19 z_t_i = torch.randn_like(x_0)
20 x_t_i = alpha_t_i * x_0 + sigma_t_i * z_t_i
21

22 # Compute the denoised intermediate x_t_im1 with tau_i
23 x_t_im1 = F(x_t_i, t_i, t_im1, tau_i)
24

25 # Learn the translator.
26 loss = (E(x_t_im1, t_im1) - E(x_t_i, t_i)).square().mean()
27

28 return loss



Table S1. Quantitative comparison measured by IS ↑, FID ↓, sFID ↓, Precision ↑ and Recall ↑ on ImageNet 256. All are evaluated
by drawing 50,000 samples via DDIM sampler upon LDM, with NFE = 10. We implement TimeTuner using the two equivalent loss
functions, i.e., Eq. (10) and Eq. (11).

NFE = 10 Method IS ↑ FID ↓ sFID ↓ Precision ↑ Recall ↑

ImageNet
DDIM 324.52 10.13 12.52 0.91 0.28

DDIM + Ours, Eq. (10) 336.94 9.63 7.29 0.92 0.30
DDIM + Ours, Eq. (11) 330.42 9.13 7.72 0.92 0.30

Table S2. Quantitative results measured by FID ↓, Precision ↑ and Recall ↑ on LSUN Bedroom 256 and FFHQ 256. All are evaluated by
drawing 50,000 samples via DDIM sampler upon LDM, with NFE = 10. We report the mean and variance of evaluation metrics with 5
independent sampling.

Method FID ↓ Precision ↑ Recall ↑

Bedroom
DDIM 9.46 0.55 0.34

DDIM + Ours 5.84 ± 0.02 0.57 ± 0.00 0.44 ± 0.01

FFHQ
DDIM 23.58 0.63 0.21

DDIM + Ours 14.92 ± 0.08 0.67 ± 0.00 0.32 ± 0.00

Table S3. Quantitative comparison measured by FID ↓, Precision ↑, and Recall ↑ on LSUN Bedroom 256, FFHQ 256, CelebA-HQ 256,
and ImageNet 256. All are evaluated by drawing 50,000 samples via DDIM sampler upon LDM, with NFE = 5.

LSUN Bedroom 256x256, unconditional generation
Method FID ↓ Precision ↑ Recall ↑
DDIM 44.97 0.21 0.13
DDIM + Ours 13.04 0.41 0.41

FFHQ 256x256, unconditional generation
Method FID ↓ Precision ↑ Recall ↑
DDIM 65.85 0.36 0.04
DDIM + Ours 28.73 0.61 0.32

CelebA-HQ 256x256, unconditional generation
Method FID ↓ Precision ↑ Recall ↑
DDIM 50.02 0.44 0.03
DDIM + Ours 39.50 0.45 0.19

ImageNet 256x256, conditional generation
Method FID ↓ Precision ↑ Recall ↑
DDIM 16.87 0.68 0.26
DDIM + Ours 9.74 0.80 0.30

C. Additional Experiments
C.1. Experimental Comparison between Two Equivalent Loss Functions

Recall that we demonstrate the equivalence between the two loss functions of TimeTuner in Theorem 2. Note that the
equivalence is proved under the assumption that the noise prediction model ϵθ is ground-truth. Therefore, in practice, the
imperfect noise prediction model indeed results in inequivalence between the two loss functions. However, as demonstrated
in Tab. S1, the empirical evidence suggests that the two variants achieve on-par performance (i.e., Eq. (10) better on some
metrics while Eq. (11) on others), both better than the baseline.

C.2. Robustness of TimeTuner

Theoretically, TimeTuner optimizes the upper bound of the gap between real and sampling distributions, implemented by
optimization of the τi on average across the whole real distribution. This may lead to potential non-robustness, especially for
large-scale dataset like text-to-image DPMs. We compute the mean and variance of evaluation metrics with 5 independent



Table S4. Comparison between optimized timesteps regarding different solvers, datasets, and trajectories.

DDIM

Original 901 801 701 601 501 401 301 201 101 1
Bedroom 855 758 662 567 477 377 284 190 95 1
ImageNet 856 757 662 566 472 377 282 189 95 1

MS-COCO 971 924 734 662 545 417 308 200 99 1

DPM-Solver-2

Original 999 885 754 597 401 194 69 21 5 1
Bedroom 986 895 778 627 423 205 73 22 5 1

FFHQ 1001 878 753 629 422 206 73 22 5 1
CelebA-HQ 989 899 779 623 420 205 73 22 5 1

Table S5. Comparison between optimized timesteps on label- and text-conditioned generation regarding different CFG scales with NFE
= 10.

ImageNet 256

Original 901 801 701 601 501 401 301 201 101 1
CFG scale = 3 856 757 662 566 472 377 282 189 95 1
CFG scale = 5 843 807 789 608 502 391 318 215 102 1
CFG scale = 7 843 931 763 695 566 422 301 207 108 1

MS-COCO 256

Original 901 801 701 601 501 401 301 201 101 1
CFG scale = 3 1012 740 647 527 507 404 302 206 89 1
CFG scale = 5 971 924 734 662 545 417 308 200 99 1
CFG scale = 7 954 935 705 597 581 412 298 180 107 1

sampling. Tab. S2 confirms the robust efficacy of TimeTuner convincingly.

C.3. Generation under extreme NFEs using DDIM

In addition to the quantitative comparison upon CD [3] in the manuscript, we also evaluate TimeTuner using DDIM sampler
on LDM [1] with NFE = 5. As demonstrated in Tab. S3, our method achieves dramatic improvements over DDIM, which
indeed help reveal the breaking point (i.e., significant performance gain) of our method.

D. Analysis on Optimized Timesteps
Tab. S4 reports some optimized timesteps regarding different solvers, datasets, and trajectories. It is noteworthy that the
optimized schedule varies across datasets, and hence is non-transferable. Thanks to the high efficiency of TimeTuner to
optimize the timesteps for a new dataset (e.g., around 1 hour for NFE = 10), our method is still highly applicable.

We also report the optimized timesteps on label- and text-conditioned generation with different CFG scales. As is
demonstrated in Tab. S5, the optimized timesteps indeed varies for different scales, but TimeTuner can consistently improve
the performance, which is reported in the manuscript.
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