Towards More Accurate Diffusion Model Acceleration with A Timestep Aligner
— Supplementary Material —

Mengfei Xia! Yujun Shen? Changsong Lei' Yu Zhou! Deli Zhao?
Ran Yi* Wenping Wang® Yong-Jin Liu'*
'Tsinghua University 2Ant Group 3Alibaba Group
4Shanghai Jiao Tong University —*Texas A&M University

A. Proofs and Derivations
In this section, we will prove the theorems claimed in the main manuscript.
A.1. Proof of Theorem 1

Theorem 1. Assume that € is the ground-truth noise prediction model, with |€g(x,t) — €o(y,t)|l2 > &|x — y||2 for any

t and some C > 0. Denote by Xff the ground-truth intermediate result at t; starting from X ,., and by fo a deterministic
sampler. We have the following inequality:

~ t
Exoﬁ[”Xti—l - x?,;_l ”2}

Nl=

K
<O (Bxore [les(forr Gy i), ti1) — €0l 1))

n=t

K

+ > Ellleo(x8,t) — eo(x?y, ti-)l2])- (s1)

=i

Proof of Theorem 1. By the assumption, we have
Exo;e[”iti—l - ngfl ||2} < CEX(J,G[HE@(f@J(itN Ti)7 ti—l) - ee(xff,l) t’i—l)HQ] (S2)

Define e;,_1 = €p(fo.r(X¢,, Ti), tiz1) — ee(xff_l ,ti—1). Then we can easily derive that

eim1 =€o(for (X,), ti1) — €0(Xe, ti) + €9(Xe i) — €a(x{) 1)

+ Eg(ng, t,) — EQ(X‘tqit_l,tl'_l) (SS)
=e€o(fo,r(Xt,,7i), ti1) — €0(Xe;, i) + €5 + Ee(Xff, ti) — Ge(Xff,l,fi—l) (S4)
K-—1
=3 (eolfor s ma)stn1) = €0, tn)) + exc
- K-—1
+ 3 (eolxtot) = eo(xfl, i), (S5)
=1

where Eq. (S4) is due to X, = fo,-(X¢,,,, Ti+1). Since xfi = X¢,, we have

ex—1 = €9(fo,r (Rens Ti)s ti—1) — €0(Xeyer tic) + €0(XJ1 trc) — €o(x]L_ tx_1). (S6)

*Corresponding author.

Then we have

K K
eii1 =) (69(f9,'r(§tn77—n)7tn71) — €9(Xy,) +y (ea X t) — ep(x)) b 1)), (S87)
n=i =i
and
Ellleo(fo,r (Xt i), tio1) — Ea(thf,l,ti—l)HQ] (S8)
K
ZE |60 fG T th7Tn) tnfl) - Ee(itnutn)‘b]
K
+ D _Ellen(xf) t1) — eo(xf, ti-1)]2] (89)
=i
K K
gz (Tn)? Z lleo(x{" t1) — ea(xy" , ti—1)]2], (S10)
where Eq. (S10) is due to Cauchy inequality. Combine Eq. (S2) and Eq. (S10), we prove the theorem. O
A.2. Proof of Theorem 2

Theorem 2. Assume that €y is the ground-truth noise prediction model. The loss function of TimeTuner resembles that of
the original DPM, i.e., fori = K, K — 1,--- |1, the optimal T; holds the following property:
arg min £;(7;)

=arg minEx[J,E[”E@(feﬂ'(iti 3 Ti)v ti—l)

Ti
. X, — O, X0

13). (S11)

Ot.

We first claim the following lemmas which are crucial for the proof of Theorem 2.
Lemma 1. Let xg ~ qo(Xo), and qoi(x¢|x0) = N (x¢; auxo, 021). Denote by q;(x;) the marginal distribution of x;. Then
we have V log q:(x¢) = —E xt_g%bct .
Proof of Lemma 1. According to the definition of ¢ (x;), one can notice that V log ¢: (x:) = Vi, log [qo(x0)qot (x¢|%0)dxo.

Then we have

J q0(x0) Vix, Qo (x¢ %0) dxo

Vio X (S12)
B (i) = J q0(x0)qoe (x¢]x0)dxo
_ J q0(%0) g0t (x¢|%0) Vx, 10g go: (x¢|x0)dxq (S13)
qt (Xt)
X X |x

- / wvm 10g qo¢ (x¢|%0)dxo (S14)

qt (Xt)
— [atxalx) ¥ log oo (s15)
= E[Vyx, log qo: (x¢x0)|x¢] (S16)
__E |:Xt — Stxo |Xt:| 7 (S17)

0%

where Eq. (S15) comes from Bayes’ rule. O

Lemma 2. Let g(x;), h(xs,Xq) be integrable functions, then the following equality holds.

Eq(Xt)[<9(Xt)7Eq(xo\Xt)[h(xt7 X0)|Xt]>] = Eq(xf,)[<g(xt)7 h(xta X0)>]' (S18)

Proof of Lemma 2. Note that
Eqx) [(9(%2)s Egxo) [P (e, %0) [xe])] = / (9(xt), Eq(xox,) [M(x¢, X0) [3]) (3¢) dx (S19)
= [tatoa), [hxe xo)ploxobxe) o))y (520)
= [[ta6. o)t o o (s21)

/ / (x¢), h(x¢, %0))p(X0, Xt)dxodx; (S22)

Eqx)[(9(x¢), h(x¢,%0))]- (523)

where Eq. (S21) is by linearity of integral. O
Then we start to prove the Theorem 2 as below.

Proof of Theorem 2. Given the assumption that €g is the ground-truth noise prediction model, we have €y (x¢, 1) = E[*=¢ |x;]
from Lemma 1. Then we have

Li(1:) = Exye [ll€a(fo,r(Xe,, 7), tim1) — €0(Xe,0 ti ||§] (S24)
=y e [l€0(fo.r(Xeio), tim1)|15 + ll€0(Xe, i) |I3]
— 2Fy, e [<€e(feT(Xt7,n) tio1), Eé(xt t))] (S25)
=Exg e [HGO fo, T(X yTi)s ti 1)”2 + H€9 X, ti }
sy e K (for(Reis7i)sti1), B {X*Uto”xolit} >} (S26)
=Exy.c [l€0(fo.r (Xt i), tim1)ll3 + ll€o(Xe, . ta)1I3]

xo € |:< fGT Xt ;Tz) tzl)vw>:| (827)
(o
Xt — 0, X0
=Exy.c {HEG(fef(7i)stio1) - tg;@}

S L B e e (528)
where Eq. (S27) is due to Lemma 2. Since ||€s(X¢,,%;)||3 — || xtgia:xo |2 is independent with 7;, we have
arg:nin Li(1;) = argTIvninExO)e [|€9(f977(§ti,7'i),ti1) — WH%} . (S29)
O
Remark 1. Note that the objective of the original DPM has the following form:
Exo.c [lleo(xe,: i) = €ll3] = Exp e {nea(xti,ti) - Xt‘“t"%s} , (S30)

which has a similar form as the objective in Theorem 2.

B. Pseudo-code of Training Process

Recall that we introduce two different training strategies for the proposed TimeTuner, i.e., the sequenatial strategy and the
parallel strategy. We have proved the equivalence of the two training strategies, and analyzed the performance difference
between the two strategies upon DDIM [2]. In this part, we provide the pseudo-codes of the two training strategies in
Algorithm S1 and Algorithm S2.

1
2
4
5

Algorithm S1 Pseudo-code of sequential training strategy of TimeTuner in a PyTorch-like style.

import torch

def sequential_training_loss(x_0, t_list, tau_list, i, tau_i, F, E):
"""Defines the forward process of one sequential training step.

Args:

x_0: Data inputs, with shape [B, C, H, W].

t_list: The preset timestep trajectory from 0 to T.

tau_list: The list consist of previously achieved re-aligned timesteps from tau_K to tau_ipl.

i: The index of current timestep tau.

tau_i: The timestep to re-align.

F: The DE solver to denoise the input ’'x’ from timestep ’'t’ to timestep ’s’ using re-aligned input condition
tau’ .

E: The noise prediction model with input ’x’ and "t’.

’

Wi
Compute the x_T at timestep T.
z_T = torch.randn_like (x_0)

x_T = alpha T * x_0 + sigma_T % z_T

Compute the denoised intermediate x_t_1i

x = x_T

for tau, t, t_prev in zip(tau_list, t_list[::-1], t_list[-2::-1]):
x = F(x, t, t_prev, tau)

x_t_ i =x

Get the current and the previous timestep.
t_i, t_iml = t_list[i], t_list[i - 1]

Compute the denoised intermediate x_t_iml with tau_i
x_t_iml = F(x_t_1i, t_i, t_iml, tau_i)

Learn the translator.
loss = (E(x_t_iml, t_iml) - E(x_t_i, t_1i)).square() .mean()

return loss

Algorithm S2 Pseudo-code of parallel training strategy of TimeTuner in a PyTorch-like style.

import torch

def parallel_training_loss(x_0, t_list, i, tau_i, F, E):
"""Defines the forward process of one parallel training step.

Args:

x_0: Data inputs, with shape [B, C, H, W].

t_list: The preset timestep trajectory from 0 to T.

i: The index of current timestep tau.

tau_i: The timestep to re-align.

F: The DE solver to denoise the input ’'x’ from timestep ’'t’ to timestep ’s’ using re-aligned input condition '
tau’ .

E: The noise prediction model with input

x’ and "t’.
Wi

Get the current and the previous timestep.

t_i, t_iml = t_list[i], t_list[i - 1]

Compute the x_t_i at timestep t_i.
z_t_1 = torch.randn_like (x_0)

x_t_ 1 = alpha_t_i » x_ 0 + sigma_t_i % z_t_1i

Compute the denoised intermediate x_t_iml with tau_i
x_t_iml = F(x_t_i, t_i, t_iml, tau_i)

Learn the translator.
loss = (E(x_t_iml, t_iml) - E(x_t_i, t_1i)).square() .mean()

return loss

Table S1. Quantitative comparison measured by IS 1, FID |, sFID |, Precision 1 and Recall 1 on ImageNet 256. All are evaluated
by drawing 50,000 samples via DDIM sampler upon LDM, with NFE = 10. We implement TimeTuner using the two equivalent loss
functions, i.e., Eq. (10) and Eq. (11).

NFE = 10 Method ISt FID | sFID | Precision 1 Recall 1
DDIM 324.52 10.13 12.52 0.91 0.28
ImageNet DDIM + Ours, Eq. (10) 336.94 9.63 7.29 0.92 0.30
DDIM + Ours, Eq. (11) 330.42 9.13 7.72 0.92 0.30

Table S2. Quantitative results measured by FID |, Precision 1 and Recall 1 on LSUN Bedroom 256 and FFHQ 256. All are evaluated by
drawing 50,000 samples via DDIM sampler upon LDM, with NFE = 10. We report the mean and variance of evaluation metrics with 5
independent sampling.

Method FID | Precision 1 Recall 1
Bedroom DDIM 9.46 0.55 0.34
DDIM + Ours 5.84 +£0.02 0.57 + 0.00 0.44 + 0.01
FFHQ DDIM 23.58 0.63 0.21

DDIM + Ours 14.92 4+ 0.08 0.67 £ 0.00 0.32 4+ 0.00

Table S3. Quantitative comparison measured by FID |, Precision 1, and Recall 1 on LSUN Bedroom 256, FFHQ 256, CelebA-HQ 256,
and ImageNet 256. All are evaluated by drawing 50,000 samples via DDIM sampler upon LDM, with NFE = 5.

LSUN Bedroom 256x256, unconditional generation

Method FID | Precision 1 Recall 1

DDIM 44,97 0.21 0.13

DDIM + Ours 13.04 0.41 0.41
FFHQ 256x256, unconditional generation

Method FID | Precision 1 Recall 1

DDIM 65.85 0.36 0.04

DDIM + Ours 28.73 0.61 0.32

CelebA-HQ 256x256, unconditional generation

Method FID | Precision 1 Recall 1

DDIM 50.02 0.44 0.03

DDIM + Ours 39.50 0.45 0.19
ImageNet 256x256, conditional generation

Method FID | Precision 1 Recall 1

DDIM 16.87 0.68 0.26

DDIM + Ours 9.74 0.80 0.30

C. Additional Experiments
C.1. Experimental Comparison between Two Equivalent Loss Functions

Recall that we demonstrate the equivalence between the two loss functions of TimeTuner in Theorem 2. Note that the
equivalence is proved under the assumption that the noise prediction model €y is ground-truth. Therefore, in practice, the
imperfect noise prediction model indeed results in inequivalence between the two loss functions. However, as demonstrated
in Tab. S1, the empirical evidence suggests that the two variants achieve on-par performance (i.e., Eq. (10) better on some
metrics while Eq. (11) on others), both better than the baseline.

C.2. Robustness of TimeTuner

Theoretically, TimeTuner optimizes the upper bound of the gap between real and sampling distributions, implemented by
optimization of the 7; on average across the whole real distribution. This may lead to potential non-robustness, especially for
large-scale dataset like text-to-image DPMs. We compute the mean and variance of evaluation metrics with 5 independent

Table S4. Comparison between optimized timesteps regarding different solvers, datasets, and trajectories.

Original 901 801 701 601 501 401 301 201 101 1
Bedroom

DDIM
ImageNet

MS-COCO 971 924 734 662 545 417 308

—_— e e | = | = =

Original 999 885 754 597 401 194 69 21 5
5 27 423 205 3 22
DPM-Solver-2 Bedroom 895 778 627 0 7 5
FFHQ 1001 629 422 206 73 22 5
CelebA-HQ 899 779 623 420 205 73 22 5

Table S5. Comparison between optimized timesteps on label- and text-conditioned generation regarding different CFG scales with NFE
= 10.

Original 901 801 701 601 501 401 301 201 101 1
CFG scale = 3 1
ImageNet 256 seae

CFG scale =5 807 789 608 502 318 215 102 1
CFG scale =7 931 763 695 566 422 301 207 108 1
Original 901 801 701 601 501 401 301 201 101 1
F le = 1012 507 404 302 2 1

MS-COCO 256 CFG scale =3))6
CFGscale=5 971 924 734 662 545 417 308 1
CFG scale=7 954 935 705 581 412 107 1

sampling. Tab. S2 confirms the robust efficacy of TimeTuner convincingly.

C.3. Generation under extreme NFEs using DDIM

In addition to the quantitative comparison upon CD [3] in the manuscript, we also evaluate TimeTuner using DDIM sampler
on LDM [1] with NFE = 5. As demonstrated in Tab. S3, our method achieves dramatic improvements over DDIM, which
indeed help reveal the breaking point (i.e., significant performance gain) of our method.

D. Analysis on Optimized Timesteps

Tab. S4 reports some optimized timesteps regarding different solvers, datasets, and trajectories. It is noteworthy that the
optimized schedule varies across datasets, and hence is non-transferable. Thanks to the high efficiency of TimeTuner to
optimize the timesteps for a new dataset (e.g., around 1 hour for NFE = 10), our method is still highly applicable.

We also report the optimized timesteps on label- and text-conditioned generation with different CFG scales. As is
demonstrated in Tab. S5, the optimized timesteps indeed varies for different scales, but TimeTuner can consistently improve
the performance, which is reported in the manuscript.

References

[1] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution image synthesis with latent
diffusion models. In IEEE Conf. Comput. Vis. Pattern Recog., pages 10684-10695, 2022. 6

[2] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Int. Conf. Learn. Represent., 2021. 3

[3] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint arXiv:2303.01469, 2023. 6

	. Proofs and Derivations
	. Proof of thm:main2
	. Proof of thm:main

	. Pseudo-code of Training Process
	. Additional Experiments
	. Experimental Comparison between Two Equivalent Loss Functions
	. Robustness of TimeTuner
	. Generation under extreme NFEs using DDIM

	. Analysis on Optimized Timesteps

