
Appendix of Any-Shift Prompting for Generalization over Distributions

A. Derivations of any-shift prompting

In the main paper, we provide the modeling of our any-
shift prompting. Here we provide further derivations of the
optimizations of the prior and posterior distributions.

To model the information of training and test distribu-
tions and their relationships, we propose any-shift prompting
within a hierarchical framework. We introduce training and
test prompts as latent variables in the hierarchical probabilis-
tic architecture, the prediction function of the CLIP model is
then formulated as:

pΦ,θ(yt|xt,Yt,Ds)

=

∫ ∫
p(yt,vt,vs|xt,Yt,xs,ys,Ys)dvtdvs

=

∫ ∫
p(yt|xt,vt,Yt)p(vt,vs|xt,Yt,Ds)dvtdvs

=

∫ ∫
pΦ(yt|xt,vt,Yt)pθ(vt|vs,xt,Yt)p(vs|Ds)dvtdvs,

(1)
where the prior distribution of the training and test prompts
is factorized as

p(vt,vs|xt,Yt,Ds)=pθ(vt|vs,xt,Yt)p(vs|Ds). (2)

p(vs|Ds) is learned from the training data Ds sampled from
training distribution p(xs,ys). pθ(vt|vs,xt,Yt) denotes
the test prompt, which aggregates both training information
from vs and test information from the test image xt and
class names Yt. The test prompt exploits the relationships
between training and test distributions by the transformer
inference network θ. vt is then utilized into the frozen
image and text encoders Φ = {ΦI ,ΦT } to generalize the
CLIP model to the test data.

To optimize the model for generating the proba-
bilistic training and test prompts, we further introduce
variational inference to approximate the true posterior
p(vt,vs|Dt,Yt,Ds) into eq. (1), which is factorized as:

qθ(vt,vs|Dt,Yt,Ds)=qθ(vt|vs,Dt,Yt)p(vs|Ds), (3)

where Dt consists of test input-output pairs sampled from the
test distribution p(xt,yt). The variational posterior shares
the same inference model θ with the prior distribution. By
integrating eq. (3) into eq. (1), the evidence lower bound

(ELBO) of the log-likelihood log pΦ,θ(yt|xt,Yt,Ds) is de-
rived as:

log pΦ,θ(yt|xt,Yt,Ds)

= log

∫ ∫
p(yt|xt,vt,Yt)p(vt,vs|xt,Yt,Ds)dvtdvs

= log

∫ ∫
p(yt′ |xt,vt,Yt)qθ(vt,vs|Dt,Yt,Ds)

p(vt,vs|xt,Yt,Ds)

q(vt,vs|Dt,Yt,Ds)
dvtdvs

= log

∫ ∫
p(yt′ |xt,vt,Yt)qθ(vt,vs|Dt,Yt,Ds)

pθ(vt|vs,xt,Yt)p(vs|Ds)

qθ(vt|vs,Dt,Yt)p(vs|Ds)
dvtdvs

= log

∫ ∫
p(yt′ |xt,vt,Yt)qθ(vt,vs|Dt,Yt,Ds)

pθ(vt|vs,xt,Yt)

qθ(vt|vs,Dt,Yt)
dvtdvs

≥ Eqθ(vt,vs)

[
log pΦ(yt|xt,vt,Yt)

]
− DKL

[
qθ(vt|vs,Dt,Yt)||pθ(vt|vs,xt,Yt)

]
,

(4)

where the expectation of the log-likelihood is calculated on
the variational posterior distribution qθ(vt,vs|Dt,Yt,Ds).

Our goal is to maximize the log-likelihood of the test data
log pΦ,θ(yt|xt,Yt,Ds), i.e., maximize the ELBO in eq. (4),
which is equivalent to minimize the negative log-likelihood.
Therefore, minimizing the loss function to optimize our any-
shift prompting becomes minimizing:

− log pΦ,θ(yt|xt,Yt,Ds)

≤ Eqθ(vt,vs)

[
− log pΦ(yt|xt,vt,Yt)

]
+ DKL

[
qθ(vt|vs,Dt,Yt)||pθ(vt|vs,xt,Yt)

]
.

(5)

B. Details of setting and implementations
B.1. Details of datasets and settings

Covariate shift. We conduct the experiments on covariate
shifts in two settings, multiple training distributions and sin-
gle training distributions. The experiments on multiple train-
ing distributions are conducted on domain generalization
datasets PACS, VLCS, Office-Home, and DomainNet,
which contain multiple domains of images with the same
label space. PACS [16] includes images of 7 classes from
four different domains, photo, art-painting, cartoon, and
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sketch. VLCS [7] consists of images of 5 classes and four
different datasets, Pascal-VOC2007 [6], LabelMe [21], Cal-
tech101 [10], and SUN [2]. Office-Home also contains
four domains, art, clipart, product, and real-world, while
the images are from 65 categories, which is much more than
PACS and VLCS. DomainNet is even larger, which con-
sists of images from six domains and 345 categories. The
domains are clipart, inforgraph, painting, quickdraw, real,
and sketch. We follow the “leave-one-out protocol” [16]
on these datasets, where we select one domain as the test
distribution, and the other domains are treated as the training
distributions. The model is trained on the training distribu-
tions and evaluated on the test one. We treat each domain
at the test distribution individually for evaluation and report
the averaged results on all test distributions in Table 2 in the
main paper. The detailed results of each test distribution are
reported in the following section.

The experiments on single training distribution follow
the domain generalization in Zhou et al. [28], where the
model is trained on ImageNet (1,000 categories) and
evaluated on the other four variants ImageNet-V2 [20],
ImageNet-(S)ketch [26], ImageNet-A [13], and
ImageNet-R [12] with the same label space. Most of
the above datasets have shifts in the images, i.e., marginal
input distributions p(x). Therefore, we use these datasets
for the evaluation of our method across covariate shift.

Label shift. We conduct the experiments on label shift
following the base-to-new classification setting in Zhou
et al. [29]. In this case, the distribution shifts occur in
the marginal output distribution p(y), where the “new”
classes have p(yc)=0 during training. We use eleven bench-
marks with label shift. The benchmarks includes general
classification datasets ImageNet [4] and Caltech101
[8]; fine-grained classification datasets OxfordPets [19],
StanfordCars [15], Flowers102 [18], Food101
[1], and FGVCAircraft [17]; scene recognition dataset
SUN397 [27]; action recognition dataset UCF101 [25]; tex-
ture classification dataset DTD [3]; and satellite image recog-
nition EuroSAT [11]. We follow the same base-new classes
split and evaluation set in Zhou et al. [28].

Concept shift. We approximate the concept shift by rela-
beling the ImageNet dataset with the superclasses in [22].
The model is trained on the original classes and evaluated on
the superclasses. In this case, the marginal input distribution
p(x) is the same while the conditional distributions p(y|x)
are different between training and test data.

Conditional shift. For conditional shift, we evaluate the pro-
posed method on two subpopulation datasets, Living-17
and Entity-30 [22], which contain images of 17 animal
categories and images of 30 entities, respectively. We fol-
low the training and test split in [9], where the training and
test distributions have the same overall classes but contain

Domains Classes

Source 1 0 - 2, 3 - 8, 9 - 14, 21 - 31
Source 2 0 - 2, 3 - 8, 15 - 20, 32 - 42
Source 3 0 - 2, 9 - 14, 15 - 20, 43 - 53
Target 0 - 64

Table 1. Classes split for joint distribution shifts on
Open-Office-Home. We use the numbers to denote the class
names. The setting contains both covariate and label shifts, leading
to joint shifts on p(x,y).

different subpopulations of those classes. In this case, the
marginal output distributions p(y) of training and test data
are the same, while the input distributions are changed ac-
cording to different categories, i.e., p(x|y) are different.
Therefore, we treat the setting as conditional shift.

Joint shift. To evaluate the proposed method on joint shift,
we conduct experiments on Office-Home under the open
domain generalization setting [24], which we refer to as
Open-Office-Home. We split the label space of the 65
classes and make various label spaces across different do-
mains. The split of classes is shown in Table 1. Therefore,
there are both covariate shift and label shift between the
training and test distributions, which we treat as the joint
shift on p(x,y).

B.2. Implementations and hyperparameters

For all experiments, we train and evaluate the model on
a single NVIDIA V100 GPU. We use the same backbone
and transformer inference network for all datasets. The
backbone is the frozen CLIP model with ViT-B/16 as the
image encoder. The transformer inference network consists
of a 2-layer transformer and 2 MLP layers to generate the
distribution of the test prompt. There are also two trainable
vectors as the mean and variance of the probabilistic training
prompt and trainable position embeddings for image and
text features respectively. The sampled test prompt is then
fed into both the image and text encoders to generalize the
features and classifiers. We provide an illustration in Figure
1. Note that the test prompt is utilized as tokens of the image
and text encoders. To make it the same size as the inputs, we
use two linear layers to project the test prompt to the image
path and text embedding space, respectively.

Except for the architecture and settings shared by all
datasets, we also provide the specific hyperparameters for
different datasets. Batch size is a hyperparameter that
varies per dataset (Tables 2 and 3). For the experiments
of label shift (eleven datasets) and the others based on
ImageNet (ImageNet-based covariate shift and concept
shift), we use the same learning rate 2e − 3 as Zhou et al.
[28] with SGD. The dataset-specific batch size and epochs
are provided in Table 2. For the covariate shift datasets
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Figure 1. Overall framework of generating the any-shift prompt
and generalizing the CLIP model.
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Learning rate 2e− 3
Optimizer SGD

Batch Size 1 4 8 6 4 4 4 2 8 10 4
Epochs 10 30 30 30 30 30 30 30 30 30 30

Table 2. Dataset-specific hyper-parameters for label shift
datasets and ImageNet-based datasets. The ImageNet-based
covariate shift, label shift, and concept shift datasets use the same
hyperparameters.
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Learning rate 5e− 4
Optimizer Adam

Training iterations 3,000 iterations 10,000 iterations 30 epochs
Batch Size 32 32 8 8 2 32 16

Table 3. Dataset-specific batch sizes for common domain gener-
alization datasets and conditional shift datasets.

Accuracy

Method Iterations Art Clipart Product Real Mean

CLIP baseline - 79.32 67.70 86.93 87.46 80.35

Transformer adapter 20,000 78.76 64.62 87.98 84.83 79.05
Any-shift prompt 3,000 83.40 72.53 91.24 90.84 84.50

Table 4. Benefits of generalization with any-shift prompting.
Directly training a transformer as an adapter of the image and
textual features still easy to lead to overfitting. By aggregating
the training, test, and relationship information into the prompt,
any-shift prompting achieves better generalization.

PACS, VLCS, Office-Home, DomainNet and joint shift
dataset Open-Office-Home, we train the model with
5e− 4 learning rate and 3000 iterations by Adam optimizer.

Inference network Art Clipart Product Real Mean

CLIP baseline 79.32 67.70 86.93 87.46 80.35

Averaging 82.27 70.91 89.95 89.66 83.20
MLP 82.48 71.09 90.18 89.73 83.37
Transformer 83.40 72.53 91.24 90.84 84.50

Table 5. Ablations on the aggregation methods. The transformer
inference network performs best since it better encodes the relation-
ships between different information.

For the conditional shift dataset conditional shift datasets
Living-17 and Entity-30, we use the same learning
rate 5e− 4 and Adam optimizers for 30 epochs. The details
are shown in Table 3.

C. More ablations and comparisons

Benefits of generalization with prompts In our any-shift
prompting, we generate the test prompt by aggregating the
training information and the test information by a trans-
former inference network. The test information is from the
image and textual features of the CLIP model. In addition
to generating the prompt for the CLIP model, another way
to achieve generalization is directly adapting the image and
textual features by the transformer network and making pre-
dictions by the image and textual features. To show the
benefits of generalization with our any-shift prompting, we
conduct an experiment that adapts the image and textual fea-
tures using the same transformer inference network, which
we refer to as “Transformer adapter”. The experimental
results on Open-Office-Home are reported in Table 4.
The transformer adapter performs even worse than the CLIP
baseline since it is still easy to overfit the training distribution.
Moreover, the transformer adapter requires much more train-
ing costs (20,000 iterations) than any-shift prompting (3,000
iterations). The results demonstrate both the effectiveness
and efficiency of our any-shift prompting for generalization
across distribution shifts.

Benefits of the transformer inference network We also
conduct experiments on Open-Office-Home with differ-
ent methods for aggregating the training and test information.
We generate the test prompt by directly averaging the train-
ing prompts, the test image feature, and textual features.
In addition, we also use an MLP network to replace the
transformer network to generate the test prompt from the
averaged features. As shown in Table 5, the transformer
inference network achieves the best performance, demon-
strating the effectiveness of considering the relationships
between different information for aggregation.

Comparison on cross-dataset shift. Following Zhou et al.
[28], we conduct experiments on the cross-dataset setting,
where the model trained on ImageNet is evaluated on the
other 10 datasets shown in Table 6. In this case, there are



Source Target

ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

CoOp [29] 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp [28] 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
TPT [23] 68.98 68.98 47.75 87.79 66.87 68.04 94.16 84.67 65.50 24.78 42.44 65.10
BPL [5] 70.70 93.67 90.63 65.00 70.90 86.30 24.93 67.47 46.10 45.87 68.67 65.95
MaPLe [14] 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
This paper 71.05 94.57 90.79 66.90 72.30 86.17 25.16 67.32 47.35 50.25 69.52 67.03

Table 6. Comparison of prompt learning methods in the cross-dataset transfer setting. Our method achieves the best overall performance
on 10 test datasets.

Method Photo Art Cartoon Sketch Mean

CLIP 99.94 97.41 98.98 88.19 96.13
CLIP-D 99.94 97.61 99.02 90.03 96.65
CoOp 99.70 97.56 98.59 89.95 96.45
CoCoOp 99.94 98.09 99.19 90.77 97.00
TPT 99.82 97.68 98.92 92.58 97.25
This paper 99.94 98.86 99.32 94.53 98.16 ± 0.4

Table 7. Detailed comparisons on PACS with covarate shift.

Method VOC LabelMe Caltech SUN Mean

CLIP 84.32 68.26 98.61 74.52 81.43
CLIP-D 82.60 68.76 98.76 72.68 80.70
CoOp 85.86 68.51 98.94 76.72 82.51
CoCoOp 86.03 70.45 99.12 77.96 83.39
TPT 86.20 71.05 99.46 80.60 84.33
This paper 88.14 72.65 100.00 85.37 86.54 ± 0.4

Table 8. Detailed comparisons on VLCS with covarate shift.

Method Art Clipart Product Real Mean

CLIP 79.32 67.70 86.93 87.46 80.35
CLIP-D 80.47 68.83 87.93 88.80 81.51
CoOp 80.99 69.52 88.69 89.28 82.12
CoCoOp 81.78 70.09 89.32 89.89 82.77
TPT 82.45 71.18 90.03 90.15 83.45
This paper 83.70 73.00 92.50 91.44 85.16 ± 0.6

Table 9. Detailed comparisons on Office-Home.

Method Clipart Painting Real Infograph Quickdraw Sketch Mean

CLIP 68.12 56.18 78.82 46.36 14.32 60.69 54.08
CLIP-D 70.83 58.02 80.52 48.85 16.39 62.84 56.24
CoOp 74.39 61.18 83.26 51.88 16.67 65.52 58.82
CoCoOp 74.82 61.56 83.98 52.68 17.47 66.10 59.43
TPT 75.09 62.77 84.67 52.65 17.28 66.98 59.90
This paper 76.08 66.62 85.03 52.56 18.05 67.26 60.93 ± 0.4

Table 10. Detailed comparisons on DomainNet.

different distribution shifts for different test datasets. Com-
pared with the other prompt learning methods, e.g., CoOp
[29], CoCoOp [28], BPL [5], MaPLe [14], and test-time
tuning method TPT [23], our method shows improvement
on 8 of the 10 datasets, as well as the averaged result.

Detailed results on covariate shift We also report the de-

tailed comparisons of each test distribution on the four
covariate shift datasets. The results of PACS, VLCS,
Office-Home, and DomainNet are provided in Table
7, 8, 9, and 10, respectively. Our method achieves the best
performance on most of the test distributions.

Inference efficiency. Since our method only uses a single
feedforward pass for generating the test prompts and making
predictions, the inference time cost per iteration on a single
V100 GPU (0.13s) is slightly higher than other prompt tuning
methods like CoOp (0.10s) and CoCoOp (0.11s), and faster
than TPT (0.25s), which has 1-step optimization at test time.
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