
A. Appendix
A.1. Dataset Construction

Criteria. We set clear criteria to limit the ambiguities and
subjectiveness. 1) For each question, the annotation should
encompass the entire temporal segment which features the
answer and also sufficient context to interpret the question.
2) If the visual content mentioned in the question is not
simultaneous or contiguous in time with the answer, then
the annotation should focus on the answer. 3) If visual
evidence for an answer appears multiple times in the video,
then all relevant video moments (individual segment) should
be annotated. 4) If the answer of the question can be seen
throughout the entire video, the question is omitted. Yet, to
ensure we can collect sufficient labels, we pay annotators on
a per annotated segment basis. Fig. 6 shows two examples
of our annotation outcome.

A.2. Implementation Details

Post-hoc. For dual-style transformer, we have tried both
attention-pooling the visual tokens as well as prepending a
summary token and then averaging the multi-head attention
of transformer. We find that the two methods bring similar
QA performance. Yet, the prepending approach demands
much more training epochs and thus we chose attention-
pooling as our final solution. Moreover, to obtain a reason-
able time span from the learned temporal attention, we treat
the frame of maximal attention value as the pivot location,
and search around it to enclose the frames whose attention
values satisfying certain criteria. Before that, the attention
values are normalized to [0, 1] using min-max method. The
criteria of whether a frame should be enclosed are jointly de-
termined by its attention score and its distance with the pivot
frame. In our implementation, we also smooth the attention
values and the distance threshold is set to 10s. Finally, the
minimal frame id and the maximal frame id are mapped to
the time seconds to obtain the temporal span. Note that the
frame of maximal attention will always be selected.

Naive Gaussian (NG). For both dual- and stacked-style
architectures, the Gaussian prediction head is implemented
with a lightweight transformer layer followed by linear pro-
jectors. Specifically, the Gaussian mask G (with dimension
equal to the length of frames sequence 𝐹 ) is propagated to
each self-attention head to weight the original self-attention
weights before aggregating (summarizing) the value vectors,
i.e., 𝐹ℎ = 𝐺 · softmax(𝐹

𝐾(𝐹𝑄)⊤√
𝑑𝑘

)𝐹𝑉 , in which Q, K, V
indicate the respective query, key and value vector in self-
attention. Notably, as there is no independent visual stream
in stacked-style transformer, we pick the tokens belonging
to the visual inputs and go through the Gaussian-weighted
transformer. The resultant tokens are then preprended back
into the multi-modal token sequence for answer prediction.

Video-Question Correspondence Learning (NG+). We

Table 5. Results of using different number of Gaussian masks.

Model #Masks Acc@QA Acc@GQA mIoP mIoU

Temp[CLIP] (NG)

1 59.4 15.5 25.8 7.7
3 57.9 15.2 25.6 9.1
5 58.8 15.8 25.7 9.1
7 58.2 15.4 25.7 10.9

find that a two-stage training paradigm to pretrain with the
Grounding-term and then finetune with both objectives in
Eqn. 3 brings better performance than one-stage training. In
both stage, the negative questions are selected from the same
videos as the positive question at a chance of 0.3. Note that
we exclude the descriptive questions because their answers
usually appear throughout the video. Also at a chance of 0.3,
we replace the positive question with a rephrased one. Dur-
ing generation, we prompt GPT-4 to focus on the nouns and
actions in the questions, to ensure the generated questions
reflect the same video moment with the original question.
We show in Fig. 7 some generated examples.

Others. We train all models 10∼20 epochs with initial
learning rate of 1e-5. Earlier stopping is adopted if the
validation results do not increase in 5 epochs. The batch
size is set to 64 for dual-style models and 4∼6 for stacked-
style ones. During inference, to fuse the temporal windows
derived from Gaussian masking and temporal attention, we
simply choose the overlap area of two windows as the final
prediction. If there is no overlap, we choose the predictions
from temporal attention for better performance.

A.3. Additional Experiments

A.3.1 Can multiple Gaussian masks help?

We take Temp[CLIP] with Naive Gaussian (NG) grounding
approach to study the effect of using different number of
Gaussian masks. The results in Tab. 5 show that using mul-
tiple Gaussian masks will hurt the QA accuracy though it
increases the grounding performance according to IoU value.
The best grounded QA (Acc@GQA) result is achieved by
using 5 Gaussian masks. Nonetheless, the improvement over
a single Gaussian mask is negligible, e.g., from 15.5% to
15.8%. Therefore, we by default use a single Gaussian mask
in major experiments. This also brings higher efficiency.

A.3.2 Does the generated questions help?

We additionally study the effect of extended positive ques-
tions in the NG+ method. As shown in Tab. 6, we find that it
improves the QA results (Acc@QA) but not for grounded
QA (Acc@GQA). In terms of grounding, it brings slightly
higher IoU result yet lower IoP compared with the models
without using the generated questions. We use the generated
positive questions in our final experiments, considering that
it improves QA and does not hurt grounded QA. The benefit
could be more significant if we rephrase for more questions;



90.0s0.0s 12.4s 14.7s 22.7s 42.6s 54.1s

Why does the woman sway her body? 

-Dancing while playing ukulele.

Why did the boy walk away from the woman?

-To take a paper.

19.0s0.0s 9.8s 10.3s 11.5s
Why does the man wearing cap backwards have

to squat down when the car approaches him? 

-Take photo.

Why are there fences separating the

audiences from the car? 

-Mark out area to drive.

What did the boy do after he put the paper on his body?

-Use it as a costume.

7.7s
Why are there two men standing at the 

center island and holding their camera?

-Recording.

Figure 6. Examples of annotations in NExT-GQA.

Ori: Why did the woman walk back towards the stroller after 

the kid moved away from the fence at the end?

Gen:

1. Why did the lady return to the pram when the child 

distanced himself from the barrier at the conclusion?

2. What made the female stride back to the pushchair after 

the youngster strayed from the gate at  the finale?

3. Why did the woman tread back to the buggy after the little 

one departed from the wall at the end?

Ori: Why did the kid walk towards the fence?

Gen:

1. What made the child move towards the barrier?

2. Why was the youngster heading towards the enclosure?

3. What caused the little one to stroll towards the fence?

4. Why did the juvenile approach the boundary?

5. What prompted the child to walk towards the fence?

…

Figure 7. Examples of generated questions by GPT-4.

currently, we only rephrase for 10% of the questions in the
training set. Yet, this will result in additional compute cost.

Table 6. Performances without (w/o) using generated questions.

Model Acc@QA Acc@GQA mIoP mIoU

NG+
Temp[CLIP] (w/ Gen) 60.2 16.0 25.7 12.1
Temp[CLIP] (w/o Gen) 59.3 16.0 26.7 9.9

NG+
FrozenBiLM (w/ Gen) 70.8 17.5 24.2 9.6
FrozenBiLM (w/o Gen) 70.2 17.5 24.4 8.7

A.3.3 Model Efficiency

We discuss the efficiency of Temp[CLIP] and FrozenBiLM
in the visually-grounded QA task. For Temp[CLIP], all re-
sults are obtained with 1 A5000 GPU. For FrozenBiLM
without NG+, the experiment was conducted on 4 A5000
GPUs; for FrozenBiLM with NG+, we run with 4 R8000
GPUs as the model needs about 46G per GPU memory. The
time is reported based on 1 epoch over the training and val-
idation data respectively. The results in Tab. 7 show that
our grounding module introduces little additional parame-
ters for training and inference compared with the respective

Table 7. Model Efficiency.

Model Train Param. Infer Param. Model Size Time (Train) Time (Infer)

Temp[CLIP] 130.3M 130.3M 0.5G 2.0m 10.0s
w/ NG 130.6M 130.6M 0.5G 2.0m 10.0s
w/ NG+ 130.6M 130.6M 0.5G 3.5m 10.0s

FrozenBiLM 29.7M 1.2B 3.8G 0.3h 1.0m
w/ NG 43.9M 1.2B 3.8G 1.3h 1.8m
w/ NG+ 43.9M 1.2B 3.8G 3.8h 1.8m

backbone models. Yet, the NG+ method takes more time to
train. Another observation is that the Temp[CLIP] has much
higher training and inference speed than FrozenBiLM.

A.3.4 Generalization to Video-LLMs

We study whether our grounding methods (post-hoc, NG and
NG+) generalize to more recent multimodal large language
models (MLLMs). We take Video-LLaMA [69] as an exam-
ple. Video-LLaMA takes advantages of frozen LLaMA [48]
and pretrains Video Q-Former to bridge video inputs with
LLaMA. It has demonstrated good VideoQA performance.
To study its performance on NExT-GQA, we outline our
adaptation as follows.



First, we omit the audio stream in Video-LLamA as NExT-
GQA emphasizes visual grounding. Then, we find that the
intermediate video Q-Former cuts off the direct correspon-
dence between video frames/segments and answer outputs.
This prevents a post-hoc analysis. To circumvent the Q-
Former yet also enjoy its cross-modal pretrained weights, we
sample 32 video segments for each video and encode each
segment by average-pooling the outputs of Q-Former. The
segment representations, versus the original global Q-Former
outputs, , are fed to LLaMA along with the QA texts (follow-
ing the format in LLaMA-VQA [20]) for answer decoding.
Moreover, we summarize the Top-𝐾 (𝐾 = 6 is the maximal
answer length) prediction scores of each video token as its
confidence score for post-hoc temporal analysis. Besides,
we prepend a special token to the video token sequence to
predict the Gaussian parameters. For NG+, the large model
size prevents joint training the two terms (Eqn.3 of the main
paper) on our server. As a remedy, we apply a two-stage
paradigm by first training for question grounding and then
fine-tuning for grounded QA. Finally, to study the effect of
multimodal video pretraining, we include a model variant by
substituting the Q-Former representations of the segments
with CLIP features of their middle frames.

Tab. 8 highlights the following observations of Video-
LLaMA’ behavior on NExT-GQA: 1) NG and NG+ give
consistent improvements over a post-hoc method. 2) Like
our existing findings in the main paper, there is a large gap
between QA and GQA accuracy. 3) Pretrained Video Q-
Former improves over image-text pre-trained CLIP for QA
but not video grounding. Tab. 9 gives a comparison between
Video-LLaMA and the two major backbones (TempCLIP
and FrozenBiLM) in the main paper. We find that Video-
LLaMA indeed shows higher Grounded QA (GQA) perfor-
mance than non-LLM method Temp[CLIP]. However, like
FrozenBiLM, the higher GQA accuracy of Video-LLaMA
is resulted from its strong QA performance but not because
of better grounding. In addition, we find that Video-LLaMA
generally performs worse than FrozenBiLM in this task. We
believe this is because Video-LLaMA solves QA by exploit-
ing the LLMs to generate the answer word by word, while
FrozenBiLM directly classifies each candidate as correct
or incorrect answer which is more tailored-made for multi-
choice QA. Similar findings can be found in the Frozen-
BiLM [62] paper which emphasizes the superiority of bi-
directional pretrained LLMs to generatively trained ones for
classification-based VideoQA.

A.3.5 Result Visualization

We show some prediction cases in Fig. 8. Both models
predict the correct answer with reasonable visual grounding
results for Q1 and Q2. From the 3rd question, we show
that the models suffer a lot in either correctly answering the

Table 8. Results on NExT-GQA validation set. †: Full validation
set of NExT-QA. *: 2-stage training.

Backbone Method Acc@QA Acc@QA† Acc@GQA mIoP mIoU

Video-LLaMA(7B)
(CLIP-VIT)

Post-hoc 63.3 65.1 15.6 23.0 8.3
NG 64.3 67.2 16.5 24.9 11.4
*NG+ 66.7 69.8 17.2 25.2 10.5
Improves +3.4 +4.7 +1.6 +2.2 +2.2

Video-LLaMA(7B)
(VQ-Former)

Post-hoc 66.0 68.4 15.5 21.2 5.3
NG 66.9 69.4 18.2 25.1 7.3
*NG+ 68.5 71.4 17.4 24.1 6.8
Improves +2.5 +3.0 +1.9 +2.9 +1.5

Table 9. Comparison on NExT-GQA test set
Method Backbone Acc@QA Acc@QA† Acc@GQA mIoP mIoU

NG

TempCLIP(130M) 59.4 62.7 15.5 25.8 7.7
Video-LLaMA(7B) 65.1 68.3 16.6 24.9 7.7
FrozenBiLM(1B) 70.4 73.1 17.2 24.0 9.2

NG+

TempCLIP(130M) 60.2 63.3 16.0 25.7 12.1
Video-LLaMA(7B) 67.3 70.6 17.1 24.5 11.0
FrozenBiLM(1B) 70.8 73.1 17.5 24.2 9.6

questions (e.g., Q5, Q6 FrozenGQA and Q8) or providing
the right visual evidence for the correct answers (e.g., Q3
FrozenGQA, Q4 and Q7). From the failure examples, we
find that when the visual concepts in the answers present
throughout the videos (e.g. “grass” and “snow” in Q4 and
Q7 respectively), the models can easily predict the correct
answers without the need to truly localizing the questioned
video segments. Furthermore, the models are still weak in 1)
answering the questions which involve small visual objects
and 2) substantiating the answers when the visual evidence
only takes small portion of the videos (Q4 ∼ Q8).

A.4. Discussion on Multi-Choice QA

Popular open-ended VideoQA datasets, such as MSRVTT-
QA, MSVD-QA and TGIF-QA, consist of very short videos,
typically ranging from 3 to 15 seconds. They do not neces-
sitate temporal grounding. While ActivityNet-QA contains
long videos, a large portion of its questions are simple and
can be answered with a single frame (by human). Given the
above consideration, we experiment on NExT-QA, specif-
ically on its multi-choice QA task as there is currently not
much literature oriented for open-ended QA. Multi-choice
QA tends to be more susceptible to language bias and spu-
rious vision-language correlation. Because the provided
negative answers may not always be distractive enough to
challenge the selection of the correct answer without video
consultation. Also, the visual concepts mentioned in the
negative answers may not exist in the given videos at all.
Conversely, our defined grounded-QA task would largely
prevent or discourage such short-cut learning.



Q1: What does the dog do after the lady in front reach out her hand in the middle?

GroundTruth Climb onto lady

TempGQA Climb onto lady

FrozenGQA Climb onto lady

11.0s

11.0s7.6s

8.7s
11.0s

7.3s 8.2s

Q2: How is the horse domesticated and prevented from running away?

GroundTruth Kept within fence

TempGQA Kept within fence

FrozenGQA Kept within fence

Q3: Why did the boys turn to their right when they went past the cages?

GroundTruth Look at horse

TempGQA Look at horse

FrozenGQA Look at horse

26.0s

26.0s20.0s

18.2s
25.7s

19.2s 22.2s

26.0s21.5s

18.2s 25.7s

1.7s
10.2s

Q4: Why does the baby put out her hand near the end?

GroundTruth Show grass

TempGQA Show grass

FrozenGQA Show grass

Q5: What does baby do after getting on the ground?

GroundTruth Pick up something

TempGQA Drinking milk.

FrozenGQA Drinking milk.

Q6: Why does the lady bent down after putting the baby on the ground?

GroundTruth Support the baby

TempGQA Support the baby

FrozenGQA Sit down.

69.0s

59.2s48.8s

9.5s 10.2s

6.2s

11.4s8.3s

10.2s10.1s

2.9s 11.3s

6.2s

6.2s 6.2s

6.2s 10.2s

29.2s 29.2s

Q7: What does the man in red shirt do as the man blue slides pass him in the middle?

GroundTruth Throw snowball

TempGQA Throw snowball

FrozenGQA Throw snowball

Q8: Why did the man in red shirt sit in the middle of the slope?

GroundTruth Look at horse

TempGQA Wait for people

FrozenGQA Wait for people

15.0s

7.3s6.0s

7.7s 10.7s

0.7s 2.2s

0.7s 1.7s

7.3s6.0s

7.7s 10.7s

Figure 8. Result visualization on NExT-GQA. TempGQA and FrozenGQA denote Temp[CLIP] and FrozenBiLM with our NG+ grounding
mechanism. The ground-truth and correct predictions are in green, while the wrong predictions are in red.


