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1. Random Shuffle is Efficient
Random shuffle operation pair is efficient since it does not
incur any extra parameters or FLOPs. It only involves swap-
ping elements of a tensor. As shown in Table Tab. 2, the
only extra cost of random shuffle is 0.01s running time on a
single GTX 1080Ti GPU.

Table 1. The efficiency of random shuffle. The input size is 256×
256.

Method #Params. (M) FLOPs (G) Time(s)
w/o random shuffle 17.8 38.4 0.07
w random shuffle 17.8 38.4 0.08

2. Model Efficiency.
To get a full picture of our model, we include comparisons
of the number of parameters and FLOPs with other methods
in Tab. 2. FLOPs is calculated with the input size 256×256.
Although the main concern is not efficiency, HomoFormer,
as shown in Tab. 2, is still highly competitive compared with
previous methods.

Table 2. The comparison of the number of parameters and FLOPs
with other methods. The input resolution is 256× 256 for FLOPs.

Method #Params. (M) FLOPs (G)
ST-CGAN [14] (CVPR’18) 29.2 17.9
SP+M-Net [10] (ICCV’19) 141.2 39.8
DSC [6] (TPAMI’19) 22.3 123.5
DHAN [1] (AAAI’20) 21.8 262.9
G2R [12] (CVPR’21) 22.8 113.9
Fu et al. [2] (CVPR’21) 142.2 104.8
Jin et al. [8] (ICCV’21) 21.2 105.0
SG-ShadowNet [13] (ECCV’22) 6.2 39.7
HomoFormer(Ours) 17.8 38.4

3. Implementation details.
Our HomoFormer employs a four-level encoder-decoder
structure. The numbers of blocks are {2, 2, 2, 2} for level-
1 to level-4 of Encoder and the corresponding blocks for
Decoder are mirrored. The number of channel is set to 32
and the window size for local self-attention is 8. Our pro-
posed method is implemented using PyTorch. Following
the prior [15], we adopt the Adam optimizer [9] with the
momentum (β1 = 0.9, β2 = 0.999). The initial learning
rate is 2e−4, then gradually reduces to 1e−6 with the cosine
annealing strategy. The training samples are augmented by

the horizontal flipping and rotation of 90◦, 180◦, or 270◦.
The patch size is 384 × 384 and the batch size is 8. We
train our HomoFormer with two NVIDIA GeForce GTX
3090 GPUs. For all the datasets, the total number of train-
ing epoch is set to 600.

4. Additional Result on ISTD
Tab. 3 provides quantitative comparison on ISTD dataset.
The performance of HomoFormer is competitive but not op-
timal. The reason we speculate is that there is illumination
inconsistency in the training pair of ISTD. However, shuf-
fling makes HomoFormer difficult to adapt to the illumina-
tion shift.

Table 3. Quantitative comparisons with the SOTA methods on the
ISTD datasets. The best and the second results are boldfaced and
underlined, respectively.

Method
Region Shadow Non-Shadow All

MAE↓ MAE↓ MAE↓
Input images 40.2 2.6 8.5
Guo et al. [5] (TPAMI’12) 18.65 7.76 9.26
ST-CGAN [14] (CVPR’18) 9.99 6.05 6.65
ShadowGAN [7] (ICCV’19) 12.67 6.68 7.41
G2R [12] (CVPR’21) 10.72 7.55 7.85
Fu et al. [2] (CVPR’21) 7.91 5.51 5.88
Jin et al. [8] (ICCV’21) 11.43 3.81 6.57
BMNet [15] (CVPR’22) 7.60 4.59 5.02
ShadowFormer [3] (AAAI’23) 6.16 3.90 4.27
ShadowDiffusion [4] (CVPR’23) 4.13 4.14 4.12
HomoFormer(ours) 6.85 4.24 4.49

5. More Visual Results
5.1. De-shadowing Results on ITSD+ Dataset

Figs. 2 to 5 present visual comparisons with other state-of-
the-art methods on the ISTD+ dataset. We can observe that
our HomoFormer can restore clean images more faithfully
(see boundary artifacts in Figs. 3 and 5).

5.2. De-shadowing Results on SRD Dataset

Figs. 6 to 9 show visual comparisons with other state-of-
the-art methods on the SRD dataset. We can observe that
the restored images output by our HomoFormer are more
close to the ground truth images.

5.3. De-shadowing Results on SBU Dataset

To validate the generalization, we evaluate the model pre-
trained on ISTD+ on the SBU dataset [11]. Fig. 10 shows
the visual comparison.



5.4. Failure Case

HomoFormer may struggle to remove shadow clearly when
facing with real-world complex scenarios. Fig. 1 present a
case that HomoFormer pretrained on ISTD+ fails to lighten
the large shadowed region of a building, which is absent
in training data. The main reason we guess derives from
the huge gap between training and testing data and Homo-
Former cannot effectively bridge this gap relying only on its
shuffling behaviour.

input our result

Figure 1. Failure Case of HomoFormer.

5.5. Uncertainty Distribution

Uncertainty can play a significant role for computer vi-
sion. For shadow removal, we can leverage to uncertainty
can estimate the degree of confidence about the prediction.
The presented HomoFormer provides a natural approach
to estimate its uncertainty due to its inherent random shuf-
fle behaviour. For example, we can evaluate an image M
times and compute the standard deviation as the uncertainty.
Specifically, let X denote the input and F denote the func-
tion of HomoFormer , the uncertainty U can be estimated
by:

U ≈

√√√√ 1

M

M∑
i=1

(
F (X;Si)− F̄ (X)

)2
, (1)

where F̄ (X) is the averaged output:

F̄ (X) =
1

M

M∑
i=1

F (X;Si). (2)

Fig. 11 suggests that without resorting to groundtruth im-
age, the estimated uncertainty can predict where errors are
prone to take place. We can observe that the model often

struggles 1 to restore pixels in high-frequent (e.g., alpha-
bets in Fig. 11) and shaded regions (e.g., shaded regions
in Fig. 11). Generally, we can put less confidence to those
regressed pixels with more uncertainty. For real-world sce-
narios where the groundtruth images are lacked, this prop-
erty is of great practical significance.

6. Broader Impacts
Generally, image acquisition system tends to suffer from
shadow degradations. Therefore, image shadow removal
is of importance in research and application. Our pro-
posed HomoFormer can attain outstanding performance for
de-shadowing images. Nevertheless, some negative conse-
quences may come along. For instance, the deviation from
the actual image textures may lead to unfair judgments in
criminal situations. In these scenarios, it is required to con-
sult with human experts to avoid misjudgments.

1The corresponding uncertainty is high.
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(a) input (b) SP+M-N (c) Jin et al. (d) BMNet

(e) SG-ShadowNet (f) ShadowFormer (g) HomoFormer (h) GT

Figure 2. Visual comparisons with state-of-the-art methods on the ISTD+ dataset.

(a) input (b) SP+M-N (c) Jin et al. (d) BMNet

(e) SG-ShadowNet (f) ShadowFormer (g) HomoFormer (h) GT

Figure 3. Enlarged region of Fig. 2.



(a) input (b) SP+M-N (c) Jin et al. (d) BMNet

(e) SG-ShadowNet (f) ShadowFormer (g) HomoFormer (h) GT

Figure 4. Visual comparisons with state-of-the-art methods on the ISTD+ dataset.

(a) input (b) SP+M-N (c) Jin et al. (d) BMNet

(e) SG-ShadowNet (f) ShadowFormer (g) HomoFormer (h) GT

Figure 5. Enlarged region of Fig. 4.



(a) input (b) DSC (d) BMNet

(e) SG-ShadowNet (f) UniShadow (g) GT

(c) DHAN

Figure 6. Visual comparisons with state-of-the-art methods on the SRD dataset.

(a) input (b) DSC (d) BMNet

(e) SG-ShadowNet (f) HomoFormer (g) GT

(c) DHAN

Figure 7. Enlarged region of Fig. 6.



(a) input (b) DSC (d) BMNet

(e) SG-ShadowNet (f) HomoFormer (g) GT

(c) DHAN

Figure 8. Visual comparisons with state-of-the-art methods on the SRD dataset.

(a) input (b) DSC (d) BMNet

(e) SG-ShadowNet (f) HomoFormer (g) GT

(c) DHAN

Figure 9. Enlarged region of Fig. 8.



Input SP+M+I-Net ShadowFormer SG-ShadowNet HomoFormer

Figure 10. Visual comparisons with state-of-the-art methods on the SBU dataset [11].



(a) input (b) uncertainty distribution (c) error distribution

Figure 11. Uncertainty originating from random shuffle can be used to predict the error distribution (i.e., |I − I ′|) between the evaluated
clean image I ′ and shadow-free image I . The HomoFormer often struggles to restore pixels in high-frequent (e.g., alphabets in the second
row) and shaded regions (e.g., shaded regions).


