NECA: Neural Customizable Human Avatar — Supplementary Material

1. Implementation Details
1.1. Building Tangent Space

To construct the tangent space, we begin by computing
the TBN (Tangent, Bitangent, Normal) matrix for the trans-
formation. Consider a triangle with vertices vy, vy, v3, and
edges e, es, es. The normal of the triangle is computed as
the cross product of edges e; and es:
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Now, focusing on vertex vy (similar computations apply to
other vertices), the normal of vertex v; can be calculated by:
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where N is the number of triangles that vertex v; belongs
to, and n? is the normal vector of the m-th triangle. The
tangent and bitangent vectors of v; can be calculated by
solving a combination of linear equations. Given the texture
coordinate (u},v}) of vertex v;, we express the edges as
linear combinations:
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This can also be written component-wise as:
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where Auj and Ao} are differences in texture coordinates
along edge e1, Auj and Awvj are differences along edge eo,
and t; and b, represent the tangent and bitangent vectors
for vertex v;. These equations can be expressed as matrix
multiplication:
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Solving for the tangent and bitangent vectors:
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For an arbitrary surface point x;, its normal n, can be
computed by:

ng = Bu;ﬁ vk (Ill, ns, ng), (7)
where B denotes barycentric interpolation, (u¥,v}) repre-
sents the UV coordinate of x;, and n;, ny, ns are the nor-
mals of the three vertices of the triangle that x, falls into.
The computation of tangent and bitangent vectors is similar.

1.2. Network Architecture

Figure 1. SDF Network. We show the architecture of our SDF
network, which takes subject-level feature s,, canonical position
x, and pose-aware feature p, as input, and outputs signed-distance
d and latent feature vector h. A skip connection that concatenates
~v(x), so and p, to the fifth layer is employed. Except for the
last layer, each layer outputs 256 dimension features with softplus

activations.
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Figure 2. Shadow Network. We show the architecture of our
shadow network, which takes latent feature h, viewing direction e
and normal n as input, and outputs shadow v. Besides the last layer,
each layer outputs 256 dimension features with ReLU activations.
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Figure 3. Albedo Network. We show the architecture of our albedo
network, which takes latent feature h and canonical position x as
input, and outputs albedo a. Each layer outputs 256 dimension
features with ReLU activations, except for the last layer.

The detailed architecture of different sub-networks in
our framework are illustrated in Figs. 1 to 3. For canonical
position x, viewing direction e, and normal n, we employ
positional encoding « to enhance the ability of capturing
high-frequency details.
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Figure 4. Qualitative comparison of relighting on the synthetic dataset. As can be seen, in contrast to the results of Relighting4D, our
generated relighting results are visually closer to the ground truths. Best view in color.

Model PSNR1T SSIM{ LPIPS |
Relighting4D [3] 21.9 0.811 0.201
Ours 22.6 0.843 0.159

Table 1. Quantitative comparison of relighting under novel pose
on the synthetic dataset. Our method outperforms Relighting4D
on the synthetic dataset with ground truth relighting results.

Novel View Novel Pose
PSNR1 SSIM1T LPIPS| PSNR{ SSIM{T LPIPS |

Rel. Pos. 28.0 0.955 0.052 26.0 0.936 0.067

Model

Dir. 27.9 0.954 0.053 259 0.935 0.067
UVH 27.8 0.954 0.053 259 0.935 0.067
Ours 28.3 0.957 0.051 26.3 0.940 0.066

Table 2. Ablation study on alternatives for our local tangent
coordinate. “Rel. Pos.” means relative position between sampled
point and nearest point, while “Dir.” indicates direction and “UVH”
represents barycentric coordinate and distance.

2. Relighting Results on Synthetic Dataset
2.1. Dataset Details

To quantitatively evaluate the performance of our method
on human relighting, we create a synthetic dataset with 12
videos using 3 publicly available 3D characters from [2],
rigged with animations from [1]. The dataset is rendered
under 4 different lighting conditions, including one natural
sunlight and three HDRI maps. Each monocular video has
about 200 frames, where only 30 frames rendered under
natural sunlight are used for training, the rest of frames are
used for evaluation. Following previous work, we employ
[7] to estimate the SMPL and camera parameters.

2.2. Quantitative and Qualitative Results

Tab. 1 demonstrates that our method clearly outperforms
Relighting4D [3] on the synthetic dataset. Visual comparison
results are presented in Fig. 4, where our method exhibits
superior performance on relighting, even in dealing with a

Num of R Novel View Novel Pose Param.
PSNRT SSIMT LPIPS| PSNRT SSIMt LPIPS|

1 27.9 0.953 0.051 25.8 0.934 0.066 1.70M

12 28.0 0.954 0.051 25.9 0.935 0.066 5.82M

48 28.3 0.957 0.051 26.3 0.940 0.066 19.30M

64 284 0.957 0.051 26.3 0.940 0.066  25.30M

Table 3. Ablation study on the number of R. As shown, larger R
corresponds to overall better performance on novel view and pose
synthesis, but this trend becomes less obvious when R > 48. To
trade off the performance and the model size, R = 48 is utilized in
all our experiments.

Novel View Novel Pose
PSNR1* SSIMt LPIPS| PSNRt SSIM?t LPIPS|
NB[11] 19.3 0.889 0.129 17.4 0.863 0.151
AN [10] 17.8 0.875 0.154 16.7 0.855 0.164
ARAH [12] 19.5 0.893 0.124 17.8 0.868 0.144
PV [9] 20.2 0.903 0.105 18.0 0.870 0.121
Ours 20.9 0.910 0.100 19.1 0.883 0.117

Table 4. More quantitative comparison on DeepCap and Dy-
naCap datasets.

Novel View Novel Pose
PSNR1 SSIMT LPIPS| PSNR?1 SSIM?T LPIPS |

HN [13] 30.4 0.974 0.024 23.8 0.936 0.069
Ours 30.9 0.978 0.023 30.9 0.977 0.023

Table 5. Quantitative comparison with HumanNeRF on subject
“377” in ZJU-Mocap.

challenging dataset with only 30 frames for training. In com-
parison, Relighting4D [3] struggles to produce physically
convincing relighting renderings.

3. Additional Quantitative Results

We present additional quantitative comparison results
on the DeepCap [4] and DynaCap [5] datasets in Tab. 4.
Specifically, we evaluate the performance of “’lan” from
DeepCap and ”vlad” from DynaCap. For each subject, we
employ 300 frames for training and another 300 frames
for evaluation. Notably, our method demonstrates superior
performance over all baseline models by a significant margin.

Additionally, we conduct a comparison with the monocu-
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Figure 5. More reposing results on ZJU-MoCap dataset. We show two groups of novel pose synthesis results with poses from AIST++ [8].

Figure 6. Ablation study on different local coordinate represen-
tations. “Rel. Pos.” means relative position between sampled point
and nearest point, “Dir.” indicates direction and “UVH” represents
barycentric coordinate and distance.

lar method HumanNeRF [13] in Tab. 5. Our results indicate
that our approach achieves superior performance, particu-
larly in the context of novel pose synthesis.

4. Additional Ablation Studies
4.1. Ablation Study on Local Coordinate

As described in our paper, we introduce a novel local coor-
dinate defined in tangent space. To validate the effectiveness
of our local coordinate, we compare it with three alternatives.
One common choice is the relative position. Denoting the
sampled point as x, and the nearest point on SMPL as x},
the relative position ¢, is expressed as cpos = X, — Xj.
Another alternative is the direction c;,-, defined as the nor-
malization of the relative position: ¢ g;, = H::ﬁ The third
option is UVH, which includes barycentric coordinate and
distance: €y, = (u, v, h), where (u, v) denotes the barycen-
tric coordinate, h represents the distance between x, and
x;. To examine the performance of these alternatives, we
conduct evaluation on the “377” subject in ZJU-MoCap [11],
and provide the quantitative results in Tab. 2. Comparing
the results, we can see that our proposed local coordinate

achieves the best results on all three metrics, manifesting

Figure 7. Impact of the number of components R in CP decom-
position.

its effectiveness and superiority. In addition, we present the
qualitative comparison results in Fig. 6, where our local
coordinate in tangent space exhibits better alignment effect.

4.2. Ablation Study on Component Number R

To assess the influence of different component numbers
R in the CP decomposition, we conduct experiments on the
subject “377” from ZJU-MoCap. The numerical results for
novel view and pose synthesis are summarized in Tab. 3.
As shown, higher component number R corresponds to bet-
ter performance, but incurs larger model size. We opt for
R = 48 in our method, for striking a balance between the
performance and the model size. The visual comparison
results on different R are shown in Fig. 7, where we can
see that the generated renderings with larger R are visually
better with less visual artifacts. Note that, the renderings
with R = 48 and R = 64 are visually similar, showing that
R = 64 would not induce noticeable performance increase
compared to R = 48.

5. More Customization Results

We also showcase additional results in Figs. 5 and 8 to 11
to further highlight the versatility of our method in vari-
ous customization tasks. For a comprehensive overview, we
encourage reviewers to refer to the supplementary video.
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Figure 8. More relighting results on ZJU-MoCap dataset. “R. w/ S.” and “R. w/o S.” refer to results with and without shadows.
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Figure 9. More retexturing results on ZJU-MoCap dataset.

6. Ethics Statement

The datasets utilized in our research are sourced from pub-
licly available repositories, including ZJU-MoCap [1 1], Neu-
Man [6], DynaCap [5] and DeepCap [4]. Additionally, we in-
corporate a dataset generated using 3D characters from Ren-
derPeople [2]. The meticulous collection of these datasets
aligns with ethical guidelines and principles.

Given the capabilities of our work in generating realistic
animated humans, it is crucial to acknowledge potential ethi-
cal considerations. NECA has the capacity to depict humans
in various scenarios, including wearing different clothing
with realistic lighting and shadow effects. While this tech-

nology offers creative possibilities, it also raises concerns
about the potential misuse of generating misleading or fab-
ricated videos of real individuals, contributing to negative
social impacts. To address this, we emphasize the responsible
and ethical use of our technology. Moreover, we recognize
the environmental impact of the computational resources
required by our method, which could contribute to increased
carbon emissions. In response, we commit to releasing our
pretrained weights to promote computational efficiency and
reduce the environmental footprint associated with using our
approach. This proactive measure aims to balance technolog-
ical advancements with ethical considerations.
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Figure 11. More shadow transfer results on DynaCap [5] and DeepCap [4] datasets.
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