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Supplementary Material

Figure 1. Asymptotic quantitative results of adding more views on NeRF Synthetic datasets in terms of PSNR. The first plot is the overall
results across five scenes; the others are scene-specific results. Low-opacity lines present the results for each repetition, while high-opacity
lines present the average result across five repetitions.

In this supplementary material, we provide details about the
following topics:
• Additional details on our motivation in Appendix A;
• Relaxation in information gain-based sampling in Ap-

pendix B;
• Additional implementation details in Appendix C;
• Additional results and visualization in Appendix D;

A. Additional Details on Our Motivation

Asymptotic performance of adding more views. To
gain a deeper insight into the impact of view selection on
novel view synthesis, we train InstantNGP [8] on the NeRF
Synthetic dataset with training splits of varied sizes ranging
from 50 to 5000 views. Figure 1 demonstrates overall and
scene-specific results. It illustrates that with sufficient train-
ing time and sampled views, RS achieves the same asymp-
totic performance as FVS. However, it can be noted that RS
samples cameras independently, which may require more
views to achieve the same rendering quality.

Sparse 3D-reconstruction runtime analysis. The pro-
posed technique also offers the advantage of reducing the
computation required for the initial sparse reconstruction
needed to estimate the camera parameters. Before training
any NeRF, one has to compute camera intrinsics and ex-
trinsics, by solving a structure-from-motion problem, which
may become costly as the number of camera n increases.
Traditional approaches rely on four steps: feature extrac-

Figure 2. The rendering performance of four distinct NeRF mod-
els, in terms of PSNR, under various z-axis rotations of the test
camera poses. Left: original test set, Right: proposed test set.

tion (O(n)), feature matching (O(n2)), SfM (O(n3)) and
bundle adjustment (O(P 3)), preventing its use for a large
number of images.2

It is worth observing that our current framework and
FVS could be amenable to performing view selection before
solving SfM, as the presented algorithm does not require
high localization accuracy. For instance, one can imagine a
scenario where a real-time slam algorithm (inertial + visual
odometry) [1, 9, 13] estimates the camera poses. Similarly,
with the coarse camera overlap, one could swiftly compute
the matrix A adopted in Equation (5) using recent fast fea-
ture matchers [5].

2where P denotes the number of camera parameters and 3D points.



Rankings inversion of SOTA methods. As discussed in
Section 3, view selection is important in the robust evalua-
tion of different NeRF models. Figure 2 and Table 1 pro-
vide detailed quantitative results, in terms of PSNR, on the
original and our proposed test set, each with thirteen sets of
rotations.

B. Relaxation in Information Gain-based Sam-

pling

Limitations without relaxation. Varying material or ge-
ometry complexity may lead to diverse reconstruction out-
comes. Figure 3 illustrates an example from the NeRF Syn-
thetic dataset. In this scene, spherical objects in Figure 3a
have different material complexity. Specifically, intricate
surface parts or highly complex materials may contribute to
an increased reconstruction error, as shown in Figure 3b. As
a result, deterministic IGS methods selecting the view with
the highest error or uncertainty tend to stack new training
views on these complex areas. For example in Figure 4,
newly sampled training views cluster in the forward face
of the chair due to its increased texture complexity. This
overfitting is counterproductive as the performances are in-
herently inferior. This can be seen in Figure 5 where deter-
ministic IGS exhibits worse performance than RS.

(a) (b)

Figure 3. Scene materials ground truth image (a); Its re-projected
PSNR from all rendered images to the mesh (b), where red means
lower PSNR.

Lloyd relaxation. To alleviate the aforementioned over-
sampling effect, we propose a modification based on the
LLoyd-Max Algorithm [6] inspired by optimal transport
and stippling theory [3, 11].

More specifically, given a set of k selected views with
camera centers (c1, . . . , ck) and m proposed views, we of-
fer a modification of the Lloyd iteration described in Algo-
rithm 3.

C. Implementation Details

Re-split the test set for TanksAndTemples. The test
sets in the TanksAndTemples datasets comprise one or two
video clips, showcasing parts of the reconstructed scene.
Figure 6a visualizes the original test view coverage of M60
and Truck. Notably, a significant portion of the objects
are not covered by the original test cameras. As moti-
vated in Section 3, we propose a novel split of the test set

Figure 4. Visualization of the distribution of initial training cam-
eras (in green) and selected cameras (in red) through IGS without
relaxation.

Figure 5. Quantitative comparisons of deterministic IGS and RS
on the NeRF Synthetic dataset. IGS without relaxation behaves
worse than RS.

Algorithm 3: Lloyd Relaxation
input : µ 2 U(⌦), d = dim(⌦), ⌦ = S2 or R3

Discrete measure 1
N

P
�xi

v 2 Rk⇥d, p 2 Rm⇥d

output: c

1 c = {v, p} 2 R(k+n)⇥d

2 for i 1 to Niter do

3 V
c
 Voronoi(c)

4 bc  computeBarycenter(Vc, µ)
5 c {v, bc

k+1...m}

6 return c

for all four scenes in the TanksAndTemples dataset which
aims at providing a more robust evaluation of different view
selection methods. We first put together all training and



Table 1. Quantitative results in terms of PSNR of four SOTA NeRF models under various z-axis rotations of the test camera poses.

Original test set 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

InstantNGP [8] 33.15 33.17 33.21 33.25 33.20 33.18 33.16 33.11 33.03 32.94 32.97 33.07 33.14
MipNeRF [2] 32.94 32.96 32.99 33.01 33.02 33.05 33.09 33.08 33.07 33.02 32.99 32.96 32.94
JaxNeRF [7] 32.14 32.16 32.19 32.22 32.27 32.32 32.38 32.35 32.33 32.25 32.21 32.17 32.14
Plenoxels [4] 32.20 32.24 32.28 32.32 32.34 32.37 32.38 32.32 32.22 32.12 32.09 32.15 32.19

Proposed test set 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

InstantNGP [8] 32.40 32.40 32.42 32.42 32.40 32.39 32.35 32.32 32.31 32.29 32.32 32.35 32.39
MipNeRF [2] 32.43 32.43 32.46 32.44 32.45 32.43 32.39 32.36 32.37 32.37 32.39 32.42 32.42
JaxNeRF [7] 31.60 31.61 31.64 31.62 31.62 31.60 31.55 31.52 31.54 31.53 31.57 31.59 31.60
Plenoxels [4] 31.58 31.58 31.59 31.60 31.59 31.58 31.53 31.50 31.48 31.47 31.51 31.54 31.55

test views for a particular scene. Then, an equal num-
ber of test views were selected as in the original test set
for each scene using FVS. The distance metric considered
during this process encompassed both spatial distance de-
fined in Equation (4) and photogrammetric distance defined
in Equation (6). We can observe from Figure 6b that our
proposed test set is able to cover the reconstructed scene
more uniformly.

ActiveNeRF [10]: ActiveNeRF regards information gain
as the reduction of uncertainty. Thus, it selects the candidate
view that maximizes the information gained at each selec-
tion step. The ActiveNeRF3 is implemented on the back-
bone of vanilla NeRF. We re-implemented it using Instant-
NGP backbone and coined it Active-InstantNGP. Direct re-
implementation of ActiveNeRF on InstantNGP failed to
learn the 3D scene due to the reformulation of the NeRF
framework as well as the training and rendering process.
We highlighted the learning of the radiance field in our
adopted loss function. Due to disparities in the rendering
performance of Active-InstantNGP, we report the rendering
performance of InstantNGP trained on the training views
selected with Active-InstantNGP.

Density-aware NeRF Ensembles [12]: We referred to
the experiment of the next best view selection in [12] and
implemented Density-aware NeRF Ensembles on Instant-
NGP within our NeRF Director framework. More specifi-
cally for each selection, we trained 5 models on the same
training views with different random seed initializations.
The training process of each ensemble model comprises
2000 training steps. Then, we computed the uncertainty
for all remaining training views using these 5 models as
described in [12]. We selected the training view with the
highest uncertainty each time.

3
https://github.com/LeapLabTHU/ActiveNeRF/tree/

main

View # FVS RS Speedup
mean � mean �

50 0.7 ±0.26 2.6 ±0.26 4.03
100 1.4 ±0.43 2.6 ±0.30 1.96
150 1.7 ±0.48 2.7 ±0.32 1.57

Table 2. Averaged training time (in minutes) and standard devia-
tion (�) comparisons of FVS against RS at the converged quality.

D. Additional Results

Runtime cost analysis on the NeRF Synthetic dataset.

We report the runtime cost result in Table 2 measuring the
training time of InstantNGP across 5 scenes of NeRF Syn-
thetic and averaged for 10 runs (with different views). For
a fixed view budget, our proposed FVS reaches the perfor-
mances of the traditional RS significantly faster (up to 4⇥
Speedup).

Quantitative results of Plenoxels. We also provide the
quantitative results of Plenoxels’ [4] asymptotic perfor-
mance of adding more views, in terms of PSNR and SSIM
(Figure 7). We reported the results on 5 scenes of the
NeRF Synthetic dataset and 3 scenes (M60, Playground,
and Truck) of the TanksAndTemples dataset for 5 repeti-
tions. Similar trends in performance, relative to the number
of views, can be observed with this alternative backbone.

Qualitative results of InstantNGP. We provide the qual-
itative results of InstantNGP on both the TanksAndTem-
ples and the NeRF Synthetic dataset, as shown in Figure 8
and Figure 9 respectively. We compared our proposed FVS
and IGS(vMF) with the baseline RS and view selection
method in [12]. It can be observed that our proposed meth-
ods can generate a clearer and sharper appearance.

References

[1] cuVSLAM (CUDA Stereo Visual SLAM) - NVIDIA
Docs. 1

[2] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik,
Peter Hedman, Ricardo Martin-Brualla, and Pratul P.

https://github.com/LeapLabTHU/ActiveNeRF/tree/main
https://github.com/LeapLabTHU/ActiveNeRF/tree/main


(a)

(b)

Figure 6. Visualization of test view coverage on objects M60 and Truck. Pink areas indicate that the ray-mesh intersection is greater than
10 in those regions. (a): Original test view; (b): Proposed test view.

Srinivasan. Mip-NeRF: A Multiscale Representation
for Anti-Aliasing Neural Radiance Fields. In 2021
IEEE/CVF International Conference on Computer Vi-

sion (ICCV), pages 5835–5844. IEEE, 2021. 3
[3] Fernando De Goes, Katherine Breeden, Victor Ostro-

moukhov, and Mathieu Desbrun. Blue noise through



(a) (b)

(c) (d)

Figure 7. Quantitative comparisons of rendering quality on Plenoxels [4] along with the increase of used training views sampled by
different view selection methods. The top row shows the results on the NeRF Synthetic dataset in terms of PSNR (a) and SSIM (b). The
bottom row shows the results on the TanksAndTemples dataset in terms of PSNR (c) and SSIM(d). Low-opacity lines present the results
for each repetition, while high-opacity lines present the average result across five repetitions.

optimal transport. ACM Transactions on Graphics
(TOG), 31(6), 2012. 2

[4] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qin-
hong Chen, Benjamin Recht, and Angjoo Kanazawa.
Plenoxels: Radiance Fields without Neural Networks.
In 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5491–5500.
IEEE, 2022. 3, 5

[5] Philipp Lindenberger, Paul-Edouard Sarlin, and Marc
Pollefeys. LightGlue: Local Feature Matching at
Light Speed. 2023. 1

[6] Stuart P. Lloyd. Least Squares Quantization in PCM.
IEEE Transactions on Information Theory, 28(2):
129–137, 1982. 2

[7] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tan-
cik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Computer Vision –

ECCV 2020, pages 405–421, Cham, 2020. Springer
International Publishing. 3

[8] Thomas Müller, Alex Evans, Christoph Schied, and
Alexander Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM Transac-
tions on Graphics (TOG), 41(4):102, 2022. 1, 3

[9] Raul Mur-Artal, J. M.M. Montiel, and Juan D. Tar-
dos. ORB-SLAM: A Versatile and Accurate Monoc-
ular SLAM System. IEEE Transactions on Robotics,
31(5):1147–1163, 2015. 1

[10] Xuran Pan, Zihang Lai, Shiji Song, and Gao Huang.
ActiveNeRF: Learning where to See with Uncertainty
Estimation. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics), 13693
LNCS:230–246, 2022. 3
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Figure 8. Qualitative comparison results of four view selection methods on the TanksAndTemples dataset with 80 training views.
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Figure 9. Qualitative comparison results of four view selection methods on the NeRF Synthetic dataset with 80 training views.
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