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Appendix
In this appendix, we further provide the following contents:
• Additional details of rough assignment in A.1.
• Optimizations of the auxiliary head in A.2.
• Additional details of contrastive learning in A.3.
• Additional implementation details in A.4.
• Additional feature visualizations in B.1.
• Sensitivity analysis of parameters, including the esti-

mated class number K and temperature τ in B.2.
• Additional results with less labeled data in B.3.
• Results on generic datasets with ViT backbone in B.4.
• Effect of different PU learning methods in B.5.
• Effect of ETF structure initialization in B.6.
• Additional visualiztions of NC in B.7.
• Further enhancement with SSL methods in B.8.
• Analysis of training complexity in B.9.
• Details of benchmark datasets in B.10.
• Literature of Positive-Unlabeled learning in C.1.
• Comparisons with related settings in C.2.
• Overall algorithm of training pipeline in D.

A. More Details of Implementation
In this section, we describe more details of implementations
for our proposed TRAILER as follows.

A.1. Additional Details of Rough Assignment
As discussed in Section 3.2 of the main text, we adopt an
equipartition constraint [5, 17] to induce a rough label as-
signment matrix Q, which is achieved by solving an optimal
transport problem formulated by,

Q = max
Q∈Γ

Tr(Q⊤P) + ϵH(Q)

s.t. Γ = {Q ∈ RK×b
+ | Q1b =

1

K
1k,Q

⊤1K =
1

b
1b}

(11)

*Corresponding author.

(a) ORCA. (b) OpenNCD.

(c) TRAILER without calibration. (d) TRAILER with calibration.

Figure 8. T-SNE feature visualization on CIFAR-10 for more base-
lines. Different colors represent the corresponding ground-truth
classes. ORCA and OpenNCD also suffer from representation col-
lapse, where the dog and cat classes are inseparable.

In Eq. (11), we aim to search for assignment Q close to
logit P by maximizing Tr(Q⊤P), while subject to Γ. In
constraint Γ, we adopt an equipartition item Q1b =

1
K1K ,

which enforces each class is selected b
K times uniformly

in the batch. This avoids degenerate solutions of falling
into the same class. Notably, the entropy regularizer H(·)
is included to make the resulting objective smoothing and
convex, thus reducing the computation cost. This prob-
lem can be solved by the well-known Sinkhorn-Knopp al-
gorithm [11] for efficient optimization (please refer to [1]
for the complete details). Formally, we define a matrix
M = exp(Pϵ ) which is the element-wise exponential of
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Methods CIFAR-10 CIFAR-100 ImageNet-100
Known Novel All Known Novel All Known Novel All

FixMatch [34] 64.3 49.4 47.3 30.9 18.5 15.3 60.9 33.7 30.2
DS3L [20] 70.5 46.6 43.5 33.7 15.8 15.1 64.3 28.1 25.9
DTC [21] 42.7 31.8 32.4 22.1 10.5 13.7 24.5 17.8 19.3
RankStats [22] 71.4 63.9 66.7 20.4 16.7 17.8 41.2 26.8 37.4
SimCLR [10] 44.9 48.0 47.7 26.0 28.8 26.5 42.9 41.6 41.5
ORCA [4] 82.8 85.5 84.1 52.5 31.8 38.6 83.9 60.5 69.7
GCD [37] 78.4 79.7 79.1 49.7 27.6 38.0 82.3 58.3 68.2
OpenLDN [33] 73.1 90.1 82.1 37.0 33.4 35.1 51.5 37.0 43.9
OpenNCD [30] 83.5 86.7 85.3 53.6 33.0 41.2 84.0 65.8 73.2

TRAILER (Ours) 87.6 91.3 89.6 53.9 42.9 48.2 87.1 76.5 81.5

Table 5. Accuracy comparison of known, novel, and all classes on CIFAR-10, CIFAR-100 and ImageNet-100 dataset. The dataset is
composed of 50% known classes and 50% novel classes, with only 10% of the known classes labeled.

P/ϵ. The label assignment is obtained by,

Q∗ = diag(u)Mdiag(v) (12)

Where u ∈ RK and v ∈ Rb are renormalization vectors
to make Q∗ a probability matrix and are updated iteratively
by,

∀y : u← [Mv]−1
y , ∀i : v ← [u⊤M]−1

i (13)

where 1 ≤ y ≤ k and 1 ≤ i ≤ b. This is known as the
Sinkhorn’s fixed point iteration problem. In practice, we
adopt a small iteration number of 3 following [17].

A.2. Optimizations of Auxiliary Head haux

Recall in the label refinery procedure, we adopt an auxiliary
head haux to address the binary task of known-novel sepa-
ration and cast this task to the Positive-Unlabeled learning
paradigm. Here we provide the details of the variational
optimization algorithm [9] we adopted.

Formally, for this simplified task of binary classification
between the positive (known) and negative (novel) classes.
The output space is denoted as Y ∈ {+1, 0} where +1
and 0 indicate the sample is positive (known) and nega-
tive (novel) respectively. The marginal distributions of the
positive, negative, and unlabeled classes are formulated as
Pp(x) = P (x | y = +1), Pn(x) = P (x | y = 0), and
P (x) respectively. The training data comprise a labeled
positive dataset P = {(xi, yi = +1)}Np

i=1
i.i.d∼ Pp(x) con-

taining merely positive samples and an unlabeled dataset
U = {xi}Nu

i=1
i.i.d∼ P (x) containing both positive and neg-

ative. We aim to learn a binary auxiliary classifier haux (x)
that is parametric to approximate the ideal Bayesian classi-
fier h∗

aux (x) ≜ P (y = +1 | x), from P and U . The positive

distribution P̂p(x) can be estimated using the Bayes rule:

Pp(x) =
P (y = +1 | x)P (x)∫
P (y = +1 | x)P (x)dx

≈ haux (x)P (x)

Eu[haux (x)]
≜ P̂p(x)

(14)

We can further prove that Pp(x) = P̂p(x) if and only if
haux (x) = h∗

aux (x), under the Assumption 1. Please refer
to [9] for the detailed proof.

Assumption 1 There exists a set A ⊂ Rd satisfying∫
A Pp(x)dx > 0 and

h∗
aux (x) = 1,∀x ∈ A (15)

After that, the quality of P̂p(x) can be evaluated by the
Kullback-Leibler (KL) divergence as follows,

KL(Pp(x)∥P̂p(x))

= Ep[log(Pp(x))− log(P̂p(x))]

= Ep [log (h
∗
aux (x))]− log (Eu [h

∗
aux (x)])

− Ep[log(haux (x))] + log (Eu[haux (x)])

= Lvar (haux (x))− Lvar (h
∗
aux (x))

(16)

The derivation of Eq. (16) is based on the definition of KL
divergence and Eq. (14). Lvar is the variational loss formu-
lated as,

Lvar (haux (x)) = log (Eu[haux (x)])− Ep[log(haux (x))] (17)

Stemming from the non-negative property of KL diver-
gence, Lvar (haux (x)) is the variational upper bound of
Lvar (h

∗
aux (x)). Hence the minimization of Eq. (16) can

be accomplished by minimizing Lvar (haux (x)), which can



Methods CIFAR-10 CIFAR-100 ImageNet-100
Known Novel All Known Novel All Known Novel All

k-means 85.7 82.5 83.6 52.2 50.8 52.0 75.5 71.3 72.7
RankStat+ [22] 19.2 60.5 46.8 77.6 19.3 58.2 61.6 24.8 37.1
UNO+ [17] 98.3 53.8 68.6 80.6 47.2 69.5 95.0 57.9 70.3
ORCA [4] 86.2 79.6 81.8 77.4 52.0 69.0 92.6 63.9 73.5
GCD [37] 97.9 88.2 91.5 76.2 66.5 73.0 89.8 66.3 74.1
GPC [43] 98.2 89.1 92.2 85.0 63.0 77.9 94.3 71.0 76.9

TRAILER (Ours) 95.7 98.3 97.5 83.5 74.3 80.5 94.7 82.1 86.3

Table 6. Results with ViT backbone following [37] on CIFAR-10, CIFAR-100 and ImageNet-100. 50% of known samples are labeled.

(a) Ablation of different values of τ . (b) Ablation of K on CIFAR-100.

Figure 9. (a) Overall accuracy with different τ from 0.1 to 1.0
on CIFAR-10 and CIFAR-100. (b) Ablation results with different
estimated class numbers K from 80 to 130 on CIFAR-100.

be empirically calculated with the averages over the positive
and unlabeled samples in a prior-free manner,

L̂var = log

nu∑
i=1

haux (x
u
i )

nu
−

np∑
i=1

log (haux (x
p
i ))

np

(18)

where np and nu are the numbers of positive and negative
samples respectively in the mini-batch. A consistency reg-
ularization Lreg is also adopted to improve the robustness
through sample mixup,

x̃ = γ · xp + (1− γ) · xu

h̃ = γ · 1 + (1− γ) · haux (x
u)

Lreg = E[(log(h̃)− log haux (x̃))
2]

(19)

where γ ∼ Beta(ς, ς) and ς is a hyperparameter. The inte-
gral loss Laux for optimizing haux is then formulated,

Laux = L̂var + λregLreg (20)

The hyperparameters λreg and ς are set following [9]. No-
tably, in our practical implementation, the auxiliary head
haux (x) shares the same representation from the backbone
and does not propagate gradients back to it.

PU algorithm CIFAR-10 CIFAR-100
Known Novel All Known Novel All

None (w/o haux ) 95.2 89.6 91.5 70.3 45.4 53.7

Dist-PU [45] 94.6 92.3 93.1 70.6 45.9 54.3
nnPU [26] 94.4 94.1 94.2 71.1 48.1 55.7
VPU (ours) [9] 93.4 95.0 94.4 69.7 48.7 55.6

Table 7. Results of TRAILER when equipped with different PU
learning algorithms for known-novel separation in label refinery.

A.3. Additional Details of Contrastive Learning

During unsupervised contrastive learning, in addition to the
self-contrastive objective Lself

con = − log
exp(z⊤

i z′
i/τ)∑n

j=1 exp(z⊤
i z′

j/τ)
,

we also adopt a nearest neighbor sampling strategy follow-
ing [16] to increase the diversity of the positive support set.
Specifically, we collect k-nearest neighbors within embed-
ding space for each sample feature zi in the batch asNk(zi),
then the contrastive objective based on nearest neighbors in-
stead of the augmented view is formulated,

Lnn
con =

∑
znn
i ∈Nk(zi)

− log
exp(z⊤i znni /τ)∑n
j=1 exp(z

⊤
i z′j/τ)

(21)

Notably, this calculation does not require extra storage as
embeddings of all samples have been stored for prototype
update. The total contrastive loss is then aggregated,

Lcon = Lself
con + λnnLnn

con (22)

where λnn is a parameter ramped up from 0 to 1 in training.

A.4. Additional Implementation Details

Here we provide additional implementation details in our
experiments. For CIFAR experiments, the loss weight α is
set as 5 in the warm-up phase and 1 in the subsequent train-
ing process. The filtering rate R% is ramped up from 0.3 to
0.9 for CIFAR-10 and 0.5 to 1 for CIFAR-100. The calcula-
tion of unlabeled classification loss and prototype update is



Methods CIFAR-10 CIFAR-100
Known Novel All Known Novel All

TRAILER 93.4 95.0 94.4 69.7 48.7 55.6

w/ Reallocate 93.3 92.3 92.6 74.5 45.0 54.9
w/ Rotation 93.0 95.9 94.9 69.6 46.3 54.1

Table 8. Results with different ETF initialization strategies on
CIFAR-10 and CIFAR-100.

(a) Equiangularity (b) Maximal separation

Figure 10. Visualizations on the (a) equiangularity and (b) maxi-
mal separation properties of neural collapse on CIFAR-100.

then only performed on the selected set Dsel . The pseudo-
label filtering is performed at the start of each epoch, in-
stead of batch-wise manner. The number of neighbors k for
neighbor augmented contrastive learning is set as 50/10 for
CIFAR-10/CIFAR-100. For ImageNet-100, we use ResNet-
50 as the backbone with a batch size of 512 and a learning
rate of 1e−2 for training of 120 epochs. We adopt standard
SGD as the optimizer with the momentum of and weight
decay of 1e−4. For the fine-grained benchmarks, we follow
GCD [37] and adopt a ViT-B/16 backbone [13] pre-trained
with DINO [6]. We use the output of [CLS] token with 768
dimensions as the embedding and train with a batch size of
128 for 200 epochs. The initial learning rate is set as 0.1 and
α is fixed as 2. The vanilla softmax function is adopted for
rough assignment on Herbarium 19. The optimization pa-
rameters for the auxiliary head and the contrastive learning
procedure follow previous work [9] and [36] respectively.
For experiments on ImageNet and semantic shift bench-
marks, we choose OpenCon [36] and SimGCD [38] as our
base implementation and the vanilla softmax predictions are
adopted during the coarse assignment. Our core algorithm
is developed using PyTorch [32] and we conduct all the ex-
periments with NVIDIA RTX A6000 GPUs.

B. Additional Experimental Results

B.1. Additional Feature Visualizations for Baselines

We further provide the representation visualizations with
t-SNE on the CIFAR-10 dataset for baselines ORCA and
OpenNCD in Figure 8. It can be observed that ORCA

Methods CIFAR-10 CIFAR-100
Known Novel All Known Novel All

TRAILER 93.4 95.0 94.4 69.7 48.7 55.6

w/ Fixmatch 95.0 95.7 95.5 70.6 50.6 57.2
w/ Mixmatch 95.3 96.1 95.8 74.1 51.1 58.7
w/ UDA 95.9 96.5 96.3 74.2 49.2 57.3

Table 9. Results when equipped with different SSL methods.

(a) CIFAR-10 (b) CIFAR-100

Figure 11. Comparisons of overall accuracy equipped with differ-
ent SSL methods on CIFAR-10/CIFAR-100. ‘w/o SSL’ indicate
the vanilla performances without second stage of SSL training.

and OpenNCD also suffer from the representation collapse
dilemma, where the samples from cat (red, known), dog
classes (brown, novel), and even part of horse classes (grey,
novel) are intertwined and indistinguishable.

B.2. Sensitivity Analysis for Hyperparameters.

Temperature Parameter τ . We investigate the effect of
the temperature parameter τ on CIFAR-10 and CIFAR-100
datasets. Figure 9a shows the performance of TRAILER
with different τ ranging from 0.1 to 1.0 for ‘All’ classes.
It can be observed that TRAILER works well and attains
stable performances in a wide range of τ for both CIFAR-
10 and CIFAR-100. So we set a moderate value of τ without
intensive tuning in our practical implementation.

Estimated Class Number K. Recall that we have veri-
fied the robustness of TRAILER with the estimated class
number K = 124 on CIFAR-100 in the main text. Here
we further provide more results with estimation error from
-20% (underestimated, K = 80) to 30% (overestimated,
K = 130). As shown in Figure 9b, when K is overes-
timated, the performance of TRAILER is stable and satis-
factory over a wide range of K. Further, when K is un-
derestimated, TRAILER bears a perceptible performance
drop for ‘Novel’ classes, but achieves slightly better per-
formance for ‘Known’ classes and remains competitive for
‘All’ classes. Interestingly, an overestimated K induces
less performance drop than an underestimated one, as the
model can adaptively activate a smaller number of proto-



Param ϵ 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

CIFAR-10 94.6 94.5 94.7 94.4 94.1 93.9 94.8 95.0

Table 10. Ablation results of the entropy weight ϵ for sinkhorn.

types when K is overestimated (only activate 112 when
K=124), and such phenomenon has also been observed in
previous works [4, 33]. Overall, such results indicate that
TRAILER is able to achieve satisfactory performance when
given a rough class number estimation using different po-
tential off-the-shelf alternatives in real-world deployment.

Entropy weight ϵ in Eq. (7). As discussed in Section
4.1, we simply set the entropy weight ϵ = 0.05 following
previous work. We further provide its ablations in Table 10
below to show the stable performance of TRAILER.

B.3. Results with Reduced Labeled Data.

Instead of utilizing 50% of known class data for the labeled
set, we further evaluate the performance of TRAILER with
only 10% of known class samples as labeled set. As shown
in Table 5, TRAILER is able to retain substantial improve-
ments over all the counterparts with less labeled data. Espe-
cially for novel classes, while other baselines mostly exhibit
obvious performance drops for novel classes, TRAILER
consistently remains competitive and shows robustness.

B.4. Results with ViT for Generic Datasets.

We have provided the results with ViT backbone on fine-
grained datasets in Section 4.3 of the main text, here we
further display the comparisons on generic datasets using
ViT backbone with DINO pre-trained weights following
the protocol in [37]. Notably, the data split is different
for CIFAR-100 as discussed later in Appendix B.10. As
shown in Table 6, TRAILER improves upon the best base-
line by 5.3%, 2.6%, and 9.4% overall accuracy on three
datasets, which continuously verifies its effectiveness with
transformer-based backbones for generic datasets.

B.5. Effect of Different PU Learning Methods.

For the label refinery component, we cast the known-novel
separation task to the PU learning paradigm and adopt a
prior-free variational algorithm VPU [9] to address it. Here
we further investigate some other PU learning approaches,
including Dist-PU [45] and nnPU [26]. As shown in Ta-
ble 7, TRAILER is able to largely advance the perfor-
mance equiped with different PU algorithms for label re-
finery. Overall, the label refinery component is designed as
a flexible mechanism and we adopt an empirically-strong
and easy-to-use VPU algorithm for this task of known-novel
separation. One may design more powerful PU algorithms
for this binary task, which we leave for future work.

Ablation ORCA OpenNCD TRAILER w/o haux w/o OT

Epoch Time 50.50s 38.29s 43.15s 40.62s 42.73s

Table 11. Comparisons of the epoch-wise training time (seconds).

B.6. Effect of ETF Structure Initialization.

We also explore different initialization manners of the tar-
geted classifier hetf . In vanilla TRAILER, we simply pre-
assign hetf with a random simplex ETF without sophisti-
cated initializations. Here we equip TRAILER with dif-
ferent initialization strategies: 1) TRAILER with Reallocate
which adopt Hungarian match between embedding centers
µ and the ETF vectors ϕetf to reallocate each targeted vec-
tor to its matching embedding center, at the first epoch af-
ter a warm-up period with learnable classifiers and retain
this reallocation subsequently; 2) TRAILER with Rotation
which follows recent work [18] and introduces a learn-
able orthogonal matrix to adjust directions of ETF structure
(Simplex EFT becomes Trivial ETF, remains equiangular
but losses the maximally separated property).

As shown in Table 8, TRAILER with Reallocate slightly
underperforms the vanilla TRAILER for overall perfor-
mance. Interestingly, on CIFAR-100 we observe that this
variant obtains stronger performance on known classes,
but at the expense of much weaker performance on novel
classes. We speculate that the representations already get
overfitted towards known classes in the warm-up phase with
learnable classifier. On the other hand, TRAILER with
Rotation excels on CIFAR-10 but lags behind on CIFAR-
100, which indicates direction adjustment is beneficial for
CIFAR-10 while maximal separation might be more impor-
tant for larger label space. Overall, the random initialization
that we adopt yields satisfactory and well-balanced results,
and it can produce stable performance without fluctuation.
We speculate such stability arises from progressive align-
ment and accurate target assignment.

B.7. Additional Visualizations of NC.

We further provide the visualizations of neural collapse
on CIFAR-100 dataset, including Stdk ̸=k′(cos(ẑk, ẑk

′
)) for

equiangularity and Avgk ̸=k′(cos(ẑk, ẑk
′
)+ 1

K−1 ) for max-
imal separation, as discussed in Section 4.3 of main text.
As shown in Figure 10, the standard deviations of cosines
and shifted average cosine values exhibit a similar trend
as on CIFAR-10 and approach near 0, which consistently
indicates that TRAILER achieves the uniformly and max-
imally separated feature structure close to neural collapse.
To prove the fitting degree between the feature center and
ETF classifier for each class, we further calculate another
metric Avg1≤k≤K(cos(ẑk, ϕetf

k )), which initially starts at
only 0.57 and finally increases to over 0.99.



Dataset Labeled Dl Unlabeled Du

#Class #Image #Class #Image

CIFAR-10 5 12.5K 10 37.5K
CIFAR-100 (ResNet) 50 12.5K 100 37.5K
CIFAR-100 (ViT) 80 20.0K 100 30.0K
ImageNet-100 50 31.9K 100 95.3K

CUB 100 1.5K 200 4.5K
Stanford Cars 98 2.0K 196 6.1K
FGVC-Aircraft 50 1.7K 100 5.0K
Herbarium 19 341 8.9K 683 25.4K

Table 12. A list of generic and fine-grained benchmarks used in the
experiments. #Image and #Class indicate the number of samples
and classes respectively.

B.8. Further Enhancement with SSL Methods.

In this section, we complement TRAILER with different
SSL methods following OpenLDN [33]. In specific, such
a pipeline first generates pseudo-labels on novel classes
in the first training stage and then directly casts this task
into traditional SSL with generated pseudo-labels to boost
performance in the second stage of training. The second
stage is compatible with different SSL approaches. Here
we adopt Mixmatch [3], Fixmatch [34], and UDA [39].
Results in Table 9 further verify the feasibility of further
enhancement of TRAILER with different traditional SSL
methods. We further provide comparisons with OpenLDN
when equipped with different SSL methods. As shown in
Figure 11, TRAILER consistently outperforms OpenLDN
when equipped with different traditional SSL methods.

B.9. Analysis of Training Complexity

We further provide the analysis of training complexity in
this section. TRAILER does not impose much extra training
complexity. (i)-It discards cumbersome pair-wise similarity
calculation compared to other baselines of open-world SSL
and frees the classifier hetf from optimization. (ii)-Extra
complexity mostly comes from haux and optimal transport
(OT). haux is a linear layer and OT can be efficiently solved.
Their training time is shown in Table 11, where they only
occupy 5.9% and 1.0% of time.

B.10. Dataset Details

We conduct experiments of TRAILER on generic datasets
following [4, 30, 33] and fine-grained datasets following
previous protocol [37, 43]. The details of these datasets are
listed in Table 12. Notably, the data split of labeled and un-
labeled on CIFAR-100 is different for protocol [4, 30, 33]
with ResNet and that [37] with ViT backbone.

Setting Labeled Dl Unlabeled Du

Known Known Novel (Unseen)

Supervised Learning Yes No No
Traditional SSL Yes Yes No
Robust/Open-set SSL Yes Yes Yes (Reject)
Novel Class Discovery Yes No Yes (Discovery)
Open-world SSL/GCD Yes Yes Yes (Discovery)

Table 13. Comparisons with some related problem setting.

C. Additional Related Work

C.1. Literature of Positive-Unlabeled Learning

Positive-unlabeled learning (PU learning) [2, 12, 45] ad-
dresses an important scenario of binary classification where
the training data only contains positive and unlabeled sam-
ples. Early approaches [19, 29, 40] for PU learning typi-
cally adopt the two-step heuristic pipeline, which first iden-
tifies reliable negative or positive samples from the un-
labeled data and then trains a binary classifier with dif-
ferent semi-supervised learning manners for label assign-
ment, such as graph-based [8, 46], confidence-based [31],
and generative-based methods [23]. In addition to two-step
methods, PU learning tasks can also be tackled by one-step
approaches [25, 35, 41]. Among them, cost-sensitive meth-
ods [28, 42] are widely adopted which maintain different
importance weights for samples, and then construct differ-
ent risk estimators for optimization. The risk estimators in-
clude unbiased risk estimators [14], convex unbiased risk
estimators [15], non-negative risk estimators [26], and so
on. Despite the success, most of these methods are estab-
lished on a known class prior and heavily hinge on an accu-
rate class prior estimation as the prerequisite.

A flurry of methods has also been recently designed for
PU learning without a class prior [9, 24, 27, 44]. CAPU
[7] jointly estimates the class prior and learns a classifier.
A novel mixup regularization technique is proposed in [27].
VPU [9] leverages the variational principle for boosted per-
formance. PAN [24] modifies the generator architecture of
GAN into a classifier to learn from PU data. Among these
PU methods, we choose an empirically strong and easy-to-
use VPU [9] algorithm for the known-novel separation in
the label refinery step of our TRAILER framework.

C.2. Comparisons with Related Settings

We further provide the comparisons for open-world semi-
supervised learning with some other related settings in Ta-
ble 13, including our focused open-world SSL (also known
as generalized category discovery and dubbed as GCD), su-
pervised learning, traditional SSL, robust SSL (similar to
open-set SSL), and novel class discovery. Please also refer
to the pioneering work ORCA [4] for more details.



D. Overall Algorithm

We describe the overall training pipeline of our proposed
TRAILER in Algorithm 1.

Algorithm 1 Pipeline of TRAILER

Input: Labeled set Dl = {xi, yi}mi=1, unlabeled set Du =
{xi}ni=1 with K = |Call |; model fθ,ϕ = hϕ ◦ gθ with
ϕetf fixed as a random simplex EFT;

1: # Warm-up phase
2: Warm-Up(D, θ, ϕ) with Lwarm in Eq. (1)
3: for epoch = 1, 2, ..., do
4: Induce representation zi = g(xi)
5: # Hierarchical Sample-Target Allocation
6: for each unlabeled sample xi ∈ Du do
7: # Rough assignment with optimal transport
8: qi = Sinkhorn(hetf (zi)) as Eq. (7)
9: # Label refinery with known-novel separation

10: Optimize haux with Laux and generate ŷaux

11: qj = qj if I(j ∈ Cknown) = ŷaux else 0
12: Hard pseudo-label ŷ = argmax1≤j≤K qj

13: end for
14: # Pseudo-label filtering class by class
15: for each class j = 1, 2, ...,K do
16: Dj

u = {(x, ŷ) ∈ Du|ŷ = j}
17: Dj

sel = {(x, ŷ) ∈ Dj
u| rank(qj) < R%}

18: end for
19: The integral selected set Dsel = ∪Kj=1D

j
sel

20: # Progressive representation alignment
21: Calculate Letf with targeted classifier as Eq. (4)
22: Calculate prototypical loss Lproto as Eq. (5)
23: Calibration with Lcls = λLproto + (1− λ)Letf

24: # Overall training objectives
25: Minimize Ltotal = Lcls + Laux + Lcon + αLent

26: end for
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