
8. Appendix
8.1. Experiment Setups

In this subsection, we present some experiment setups in
detail. Concretely, we list the sources of networks, the size
of the test set, and the initial perturbation range in Table
3. We evaluate methods on 10 inputs for all CNNs in Ta-
ble 1 and 2. As CIFAR Conv MaxPool has low accuracy
and low robustness, the size of the test set is 50 and the ini-
tial perturbation range is 0.00005. Testing on 10 inputs can
sufficiently evaluate the performance of verification meth-
ods, as it is shown that the average certified results of 1000
inputs are similar to 10 images [4].

8.2. Additional Experiments

In this subsection, we conduct some additional experiments
to further illustrate (I) the advantage of the block-wise tigh-
ness over the neuron-wise tightness, (II) the time efficiency
of MaxLin compared to other BaB-based verification tools,
(III) the performance of MaxLin using multi-neuron ab-
straction techniques, and (IV) the performance of MaxLin
on PointNets.

We list the sources of networks for additional experi-
ments in Table 3. We evaluate methods on 100 inputs for
ERAN benchmark (CIFAR Conv MaxPool) and 100 inputs
for PointNets. The perturbation range ϵ is 0.005 for Point-
Nets and is 0.0007, 0.0008, 0.0009, 0.0010, or 0.0011 for
CIFAR Conv MaxPool. We follow the metrics used in the
baseline methods. As for the effectiveness, we use certi-
fied accuracy, the percentage of the successfully verified
inputs against the perturbation range, to evaluate the tight-
ness of methods. We also use the average per-example ver-
ified time as the metric for time efficiency. In additional ex-
periments II and III, we compare MaxLin with three state-
of-the-art verification techniques, which use the BaB and
multi-neuron abstraction technique to enhance the preci-
sion. Concretely, the baselines are MN-BaB [12], α,β-
CROWN [41, 48, 50] (VNN-COMP 2021 [2] and 2022 [32]
winner), and ERAN. In additional experiment IV, we evalu-
ate the performance of MaxLin and three single-neuron ab-
straction methods(DeepPoly [37], 3DCertify [27], and Ti-
Lin [45]) on PointNets.

8.2.1 Results (I): Advantages Over The Neuron-wise
Tightest Method

To further illustrate the advantage of the block-wise tight-
ness (MaxLin) over the neuron-wise tightness(Ti-Lin), we
analyze the verified interval of the output neurons of the
last layer. In Figure 4, we compare the results com-
puted by MaxLin and Ti-Lin on CIFAR Conv MaxPool and
MNIST LeNet Tanh, whose actvations are ReLU and S-
shaped, respectively. For the output neurons(10 labels), we

Table 3. The additional experimental setup and source of neural
networks used in experiments. ϵ0 is the initial perturbation range
in Algorithm 1. The third column represents the size of the input
test set.

Dataset Network Size ϵ0 Source

MNIST

Conv MaxPool 10 0.005 ERAN

CNN, 4 layers 10 0.005

CNN-Cert

CNN, 5 layers 10 0.005

CNN, 6 layers 10 0.005

CNN, 7 layers 10 0.005

CNN, 8 layers 10 0.005

LeNet ReLU 10 0.005

LeNet Sigmoid 10 0.005

LeNet Tanh 10 0.005

LeNet Atan 10 0.005

CIFAR-10

Conv MaxPool 50 0.00005 ERAN

CNN, 4 layers 10 0.005

CNN-Cert
CNN, 5 layers 10 0.005

CNN, 6 layers 10 0.005

CNN, 7 layers 10 0.005

CNN, 8 layers 10 0.005

Tiny ImageNet CNN, 7 layers 10 0.005

ModelNet40

16p natural 100 0.005

3DCertify
32p natural 100 0.005

64p natural 100 0.005

128p natural 100 0.005

256p natural 100 0.005

0 1 2 3 4 5 6 7 8 9
-200

0

200

400

600

Label

D
ev
ia
tio
n

CIFAR_Conv_MaxPool

0 1 2 3 4 5 6 7 8 9
-2

-1

0

1

2

MNIST_LeNet_Tanh

Label

D
ev
ia
tio
n

Figure 4. Visualization of the output intervals verified by MaxLin
and Ti-Lin. (l,u) and (l′,u′) represent the output bound of Ti-
Lin and MaxLin testing on 100 inputs, respectively. Red and blue
dots represent u− u′ and l− l′, respectively.

use (l,u) and (l′,u′) to represent the output bound of Ti-
Lin and MaxLin testing on 100 inputs, respectively. We use
the red and blue dots to represent u−u′ and l− l′, respec-
tively. The x-axis represents the output neuron index(label),
and the y-axis represents the deviations between the lower
and upper bounds of the intervals.

As the activation of CIFAR Conv MaxPool is ReLU, the
lower bounds of the ouput neurons are mostly zero and thus



0.0
00
7

0.0
00
8

0.0
00
9

0.0
01
0

0.0
01
1

0

10

20

30

ε

Ve
rif

ie
d 

(%
)

MaxLin

α, β-CROWN
MN-BaB

ERAN

0.0
00
7

0.0
00
8

0.0
00
9

0.0
01
0

0.0
01
1

0

1000

2000

3000

4000

ε

Ti
m

e 
(s

)

Figure 5. Certified accuracy(%) and average per-example verifica-
tion time(s) on CIFAR Conv MaxPool tested by MN-BaB, α,β-
CROWN, ERAN, and MaxLin(using single-neuron techniques for
ReLU).

the deviation of lower bounds is zero. Except for this case,
most u− u′ are larger than zero and l − l′ are smaller than
zero in Figure 4. It reveals that the block-wise tightest upper
linear bounds could bring tighter output intervals than the
neuron-wise tightest linear bounds. Consequently, MaxLin
could certify much larger robustness bounds than Ti-Lin in
Table 1.

8.2.2 Results (II): Performance Using Single-neuron
Abstraction for ReLU

We conduct additional experiments to present the time effi-
ciency of the single-neuron abstraction technique, which is
used by MaxLin in Section 5. We compare MaxLin(single-
neuron abstraction for ReLU) with three state-of-the-art
verification techniques(MN-BaB [12], α,β-CROWN [41,
48], and ERAN using multi-neuron abstraction) on CI-
FAR Conv MaxPool. The results are presented in Fig-
ure 5. In terms of time efficiency, MaxLin can accelerate
the computation process with up to 14.1, 96.5, and 23.8×
compared to MN-BaB, α, β-CROWN, and ERAN, respec-
tively. Although MaxLin uses the single-neuron abstrac-
tion technique for ReLU, MaxLin still can enhance pre-
cision with up to 9.1, 9.1, and 3.0% improvement com-
pared to MN-BaB, α, β-CROWN, and ERAN , respectively.
These results demonstrate that the single-neuron abstraction
technique has the potential of verifying large models and
other complex models, such as PointNets(results in Subsec-
tion 8.2.4)

8.2.3 Results (III): Performance Using Multi-neuron
Abstraction for ReLU

As ERAN framework, atop which MaxLin is built, not only
supports single-neuron abstraction but also integrates the
multi-neuron abstraction for ReLU. We compare MaxLin
using multi-neuron abstraction for ReLU to MN-BaB, α,
β-CROWN, and ERAN using multi-neuron abstraction on
CIFAR Conv MaxPool. The results are shown in Figure 6.

0.0
00
7

0.0
00
8

0.0
00
9

0.0
01
0

0.0
01
1

0

10

20

30

ε

Ve
rif

ie
d 

(%
)

α, β-CROWN
MN-BaB
ERAN
MaxLin

0.0
00
7

0.0
00
8

0.0
00
9

0.0
01
0

0.0
01
1

0

1000

2000

3000

4000

ε

Ti
m

e 
(s

)

Figure 6. Certified accuracy(%) and average per-example verifica-
tion time(s) on CIFAR Conv MaxPool tested by MN-BaB, α,β-
CROWN, ERAN, and MaxLin(using multi-neuron techniques for
ReLU).

The results show that MaxLin has higher certified accuracy
with up to 15.2, 15.2, 6.1% improvement compared to MN-
BaB, α, β-CROWN, and ERAN, respectively. In terms of
time efficiency, MaxLin has similar time cost to MN-BaB
and has up to 9.5 and 1.9 × speedup compared to α, β-
CROWN and ERAN, respectively. These results show that
if using multi-neuron abstraction, MaxLin also could have
higher certified accuracy and less time cost than these veri-
fication tools.

8.2.4 Results (IV): Performance on PointNets

3D point cloud models are widely used and achieve
great success in some safety-critical domains, such as au-
tonomous driving. It is of vital importance to provide a
provable robustness guarantee to models before deployed.

As 3DCertify is a robustness verifier for point cloud
models, MaxLin, which is built atop the 3DCertify frame-
work, can be extended to certify the robustness of 3D Point
Cloud models against point-wise l∞ perturbation and 3D
transformation. Here, we demonstrate that MaxLin is not
only useful beyond image classification models but also per-
forms well on other models. To that end, we show certifi-
cation results against point-wise l∞ perturbation on seven
PointNets for the ModelNet40 [44] dataset in Table 4. The
PointNet whose inputs’ point number is k is denoted as
kp natural. As Ti-Lin is the best state-of-the-art tool built
on the CNN-Cert framework, we integrate its linear bounds
for MaxPool into the 3DCertify framework as one baseline.
The generation way of the test set is the same as 3DCertify
and all experiments use the same random subset of 100 ob-
jects from the ModelNet40 [44] dataset. The certification
results represent the percentage of verified robustness prop-
erties and the perturbation range is 0.005. The perturbation
is in l∞ norm and is measured by Hausdroff distance.

As for tightness, the certification results in Table 4 show
that MaxLin outperforms other tools in all cases in terms
of tightness. It is reasonable that the results for 16p natural
and 256 natural certified by 3DCertify and MaxLin are the
same, as the perturbation range is not large enough to dis-



Table 4. Averaged certified results and runtime on PointNet on the ModelNet40 datasets tested by DeepPoly, 3DCertify, Ti-Lin, and
MaxLin, where 16p natural represents the PointNet model is naturally trained and the number of its point input is 16.

Dataset Network Certified accuracy (%) Average Runtime(second) Speedup

DeepPoly 3DCertify Ti-Lin MaxLin DeepPoly 3DCertify Ti-Lin MaxLin vs. 3DCertify

ModelNet40

16p natural 72.73 74.03 74.03 74.03 10.37 18.22 12.47 10.61 1.72

32p natural 54.88 58.54 58.54 64.63 17.88 34.79 21.24 18.06 1.93

64p natural 32.56 40.70 36.05 47.67 35.85 96.04 42.96 36.63 2.62

128p natural 4.55 11.36 2.27 14.77 81.46 207.04 110.16 85.90 2.41

256p natural 1.12 4.49 1.12 4.49 178.34 494.70 248.19 199.88 2.47

tinguish the tightness of these tools. As for efficiency, in
Table 4, MaxLin has up to 2.62 × speedup compared with
3DCertify and is slightly faster than Ti-Lin. MaxLin has
almost the same time consumption as DeepPoly. In sum-
mary, these results demonstrate that our fine-grained linear
approximation can help improve both the tightness and ef-
ficiency of robustness verification of other models beyond
the image classification domain.

8.3. Complexity analysis of MaxLin

For a K-layer convolutional network, we assume that the
k-th layer has nk neurons and the filter size is k × k. The
time complexity of backsubstitution isO(K×maxn3

k) [49]
and the backsubstitution process will be repeated K − 1
times to verify one input perturbed within a certain pertur-
bation range. Therefore, the time complexity of MaxLin is
O(K2 ×maxnk

3).

8.4. Proof of Theorem 1

We prove the correctness of linear bounds in Theorem 1 as
follows.

Proof. Upper linear bound:
Case 1:

When (li = lmax) ∧ (li ≥ uj), u(x1, · · · , xn) = xi and
f(x1, · · · , xn) = xi. Therefore,

u(x1, · · · , xn)− f(x1, · · · , xn) =xi − xi

=0

Case 2:

Otherwise, f(x1, · · · , xn) = max{x1, · · · , xn}

If f(x1, · · · , xn) = xi,

u(x1, · · · , xn)− f(x1, · · · , xn)

=
ui − uj

ui − li
(xi − li) + uj − xi

=
li − uj

ui − li
xi −

uj − li
ui − li

ui

=
uj − li
ui − li

(ui − xi)

≥0

If f(x1, · · · , xn) = xj ,

u(x1, · · · , xn)− f(x1, · · · , xn)

=
ui − uj

ui − li
(xi − li) + uj − xj

≥0

Otherwise, we assume f(x1, · · · , xn) = xq , where q ̸=
i, j and q ∈ [n].

u(x1, · · · , xn)− f(x1, · · · , xn)

=
ui − uj

ui − li
(xi − li) + uj − xq

≥ui − uj

ui − li
(xi − li) + uj − uq

≥0

Lower linear bound:

f(x1, · · · , xn) =max(x1, · · · , xn)

≥xj

=l(x1, · · · , xn)

This completes the proof.

8.5. Proof of Theorem 2

First, we prove minimizing the volume of the over-
approximation zone of the linear bounds Uk+1

b (·) and
Lk+1
b (·) for non-linear block is equivalent to minimizing

Uk+1
b (mk−1) and Lk+1

b (mk−1), respectively.



Theorem 3. Minimizing∫∫
xk−1∈[lk−1,uk−1]

(Uk+1
b (xk−1)−Lk+1

b (xk−1))dxk−1

is equivalent to minimizing Uk+1
b (mk−1) and

Lk+1
b (mk−1)

The proof of Theorem 3 is as follows.

Proof. First, Minimizing∫∫
xk−1∈[lk−1,uk−1]

(Uk+1
b (xk−1)−Lk+1

b (xk−1))dxk−1

is equivalent to minimizing the∫∫
xk−1∈[lk−1,uk−1]

(Uk+1
b (xk−1)− fk−1(xk−1))dxk−1

and∫∫
xk−1∈[lk−1,uk−1]

(fk−1(xk−1)− Lk+1
b (xk−1))dxk−1

, respectively.
Therefore, it is equivalent to minimize the∫∫
xk−1∈[lk−1,uk−1]

Uk+1
b (xk−1)dxk−1 and∫∫

xk−1∈[lk−1,uk−1]
(−Lk+1

b (xk−1))dxk−1, respectively.

Because Uk+1
b (xk−1) is a linear combination of xk−1.

Without loss of generality, we assume Uk+1
b (xk−1) =∑

q∈[nk−1]
Ak+1

u,q xk−1
q +Bk+1

u . Then,∫∫
x∈[lk−1,uk−1]

Uk+1
b (xk−1)dx

=

∫∫
x∈[lk−1,uk−1]

(
∑

q∈[nk−1]

Ak+1
u,q xq +Bk+1

u )dx

=Π
nk−1

i=1 (uk−1
i − lk−1

i )(
∑

q∈[nk−1]

Ak+1
u,q

uk−1
q + lk−1

q

2
+Bk+1

u )

=Π
nk−1

i=1 (uk−1
i − lk−1

i )Uk+1
b (mk−1)

where mk−1 = (
uk−1
1 +lk−1

1

2 , · · · ,
uk−1
nk−1

+lk−1
nk−1

2 ), be-
cause uk−1

q , lk−1
q , q ∈ [nk−1] are constant, and the

minimize target has been transformed into minimizing
Uk+1
b (m).

Therefore, minimizing∫∫
xk−1∈[lk−1,uk−1]

Uk+1
b (xk−1) is equivalent to minimize

Uk+1
b (mk−1)

Similarly, minimizing
−
∫∫

xk−1∈[lk−1,uk−1]
Lk+1
b (xk−1) is equivalent to

minimize −Lk+1
b (mk−1)

Based on Theorem 3, we prove Theorem 2 as follows.

Proof. When l < 0 ∧ u > 0, the linear bounds of ReLU
used in our approach are the same as [4, 37, 49], which are
the provable neuron-wise tightest upper linear bounds [37].
It is:

u(x) =
u

u− l
(x− l) (2)

First, we prove the upper linear bound is the block-wise
tightest. Without loss of generality, we assume ReLU is at
the k-th layer. We use uk+1, lk+1 and uk+1

M , lk+1
M to denote

other linear bounds and our linear bounds for the MaxPool
function, respectively. As the slope of the MaxPool linear
bounds is always non-negative, the global upper and lower
linear bounds of the ReLU+MaxPool block are:

uk+1(xk
1 , · · · , xk

n)

≤uk+1(uk(xk−1
1 ), · · · , uk(xk−1

n ))

=:Uk+1
b (xk−1

1 , · · · , xk−1
n )

lk+1(xk
1 , · · · , xk

n)

≤lk+1(lk(xk−1
1 ), · · · , lk(xk−1

n ))

=:Lk+1
b (xk−1

1 , · · · , xk−1
n )

where we use Uk+1
b (·) and Lk+1

b (·) to denote the global up-
per and lower linear bounds of the ReLU+MaxPool block,
respectively.

If Uk+1
b (mk−1

1 , · · · ,mk−1
n ) reaches its minimum, the

upper linear bound of Theorem 1 are the provable block-
wise tightest.

Upper linear bound:

Uk+1
b (mk−1

1 , · · · ,mk−1
n )

=uk+1(uk(mk−1
1 ), · · · , uk(mk−1

n ))

=uk+1(
uk−1
1 (mk−1

1 − lk−1
1 )

uk−1
1 − lk−1

1

, · · · , u
k−1
n (mk−1

n − lk−1
n )

uk−1
n − lk−1

n

)

=uk+1(
uk−1
1 (

uk−1
1 −lk−1

1

2 )

uk−1
1 − lk−1

1

, · · · ,
uk−1
n (

uk−1
1 −lk−1

1

2 )

uk−1
n − lk−1

n

)

=uk+1(
uk−1
1

2
, · · · , u

k−1
n

2
)

=
1

2
uk+1(uk−1

1 , · · · , uk−1
n )

=
1

2
uk+1(uk

1 , · · · , uk
n)

≥1

2
max{uk

1 , · · · , uk
n}

=
1

2
uk+1
M (uk

1 , · · · , uk
n)

This means uk+1
M (·) is the block-wise tightest.


