
A. Appendix Summary

In the appendix, we cover additional details of DDPO [5]
and Reinforcement Learning Finetuning (RLFT) (Ap-
pendix B), training data details (Appendix C.1), training
details (Appendix C.2), experiment details (Appendix C.3),
user study details (Appendix C.4), additional Multi-view
Reconstruction Consistency (MRC) metric experiments
(Appendix D), ablation studies (Appendix E), additional re-
lated works (Appendix F), and broader impacts and future
work (Appendix G).

B. Additional Details of DDPO and RLFT

B.1. Definitions

Following [5, 36, 45, 55], an epoch is defined as one
round of data collection (sampling), which may consists
multiple PPO [45] update steps (training), as discussed
in Eq. (10) and Sec. 4.2. This definition of “epoch” is dif-
ferent from the meaning in supervised learning which usu-
ally refers to go through all data once. Since we opt for
using pure on-policy training (vanilla policy gradient), as
discussed in Sec. 4.2, we only do one training step per sam-
pling step, and thus our sampling batch size and training
batch size are equal.

B.2. Reward Normalization in DDPO

Specifically, the mean and standard deviation statistics
of the rewards are tracked for each prompt c:

Ar(x0, c) =
r(x0, c)− µr(c)

σr(c)
(9)

DDPO’s [5] reward-normalizing advantage replaces the
value model that is more widely adopted in PPO-based [45]
RLHF methods [36, 51, 55]. This is similar to the recent
work [25], which shows that the value model creates unnec-
essary computation cost that can be replaced with a simpler
advantage formulation.

B.3. DDPOIS Policy Gradient Function

By using the advantage term (Eq. (9)) in place of the
reward, the DDPOIS policy gradient function is:

ĝIS = E

[
T∑

t=0

pθ(xt−1|c, t, xt)

pθold(xt−1|c, t, xt)

· ∇θ log pθ(xt−1|c, t, xt)Ar(x0, c)

]
(10)

where the expectation is taken over data generated by the
policy πθold with the parameters θold.

B.4. Computing KL Divergence

Following the widely adopted implementation in LLM
RLHF [36, 55], we incorporate KL penalty into the reward
function. Subtraction of the log probabilities is commonly
used to approximate the full KL divergence [51, 55]:

KL (log pθ(x0|c, T, xT )|| log pθbase(x0|c, T, xT ))

=

T∑
t=0

log pθ(xt−1|c, t, xt)− log pθbase(xt−1|c, t, xt)

T + 1

(11)

where pθbase is the base model. We will denote this approx-
imated KL divergence term as KL(x0|c, xT ) for clarity in
presentation.

B.5. Hypotheses on Stability and Sample Efficiency

Diverging from DDPO [5] and most Large Language
Model (LLM) Reinforcement Learning from Human Feed-
back (RLHF) literature [2, 3, 36, 51, 55], we choose RE-
INFORCE [54] (DDPOSF) over PPO [45] (DDPOIS) for its
superior training stability. We provide two hypotheses be-
hind our surprising finding.

(1) Training stability is more vital than sample efficiency
when the task reward function is more challenging. When a
reward function is more variant with respect to the model’s
output, it becomes more difficult for the model to discover
the pattern of high-reward outputs and to improve its re-
wards. The high-variance prompt alignment reward curves
in Fig. 5 of DDPO [5] indicates the challenging nature of
the prompt alignment task as opposed to the smooth reward
curves for the aesthetics and compressibility tasks in Fig. 4
of DDPO [5].

(2) The RL Finetuning (RLFT) sample efficiency is less
important for a large model which requires less finetun-
ing steps, as demonstrated in studies of LLM instruction
finetuning [10]. Similarly, our RLFT on a 2.6B-parameter
UNet from SDXL [39] only takes 55 epochs, as opposed
to DDPO’s [5] RLFT on a 860M-parameter UNet from SD
1.4 [42] using 200 epochs. Therefore, the potential sam-
ple efficiency gain provided by the multi-step update of
PPO [45] gets outweighted by the training stability provided
by REINFORCE [54].

The favorableness of REINFORCE [54] could apply to
broader scenarios that fits these two conditions. We leave
the verification of our hypotheses as future work.

C. Implementation Details
C.1. Training Data

An advantage of Reinforcement Learning Finetuning
(RLFT) over Supervised Finetuning (SFT) is that, we can
manually create a high-quality text prompts training set,



def compute_mrc(ori_views, ori_cam_poses, lrm, lpips, resize_res):
nerf = lrm(ori_views, ori_cam_poses)
nerf_views = nerf.render(ori_cam_poses)
square_bbox = compute_square_bbox(ori_views) # bounding box coordinates for each view
x_min, y_min, x_max, y_max = square_bbox
ori_views_bbox = [resize(o[:, y_min:y_max + 1, x_min:x_max + 1], resize_res) for o in

ori_views]↪→

nerf_views_bbox = [resize(n[:, y_min:y_max + 1, x_min:x_max + 1], resize_res) for n in
nerf_views]↪→

mrc = lpips(ori_views_bbox, nerf_views_bbox).mean()
return mrc

Listing 1. Pseudo code for our MRC implementation. ori views and ori cam poses are the multi-view images to be evaluated and their
camera poses. lrm is the sparse-view LRM [17, 24]. lpips the the LPIPS [57] metric. resize res is a fixed resolution to which we resize the
bounding box patches.

while creating a dataset of diverse ground truth multi-view
images for these high-quality text prompts is prohibitively
expensive for SFT. By relying on samples generated by the
model itself to compute the reward and the loss, RLFT can
optimize a model beyond the limitation of a dataset and
preserves the diversity and the style of the base model. In
Carve3D, our training prompts preparation process involves
two strategies.

Training Data Curation Instead of randomly sampling
prompts from a dataset, we employ a data curation strategy
where prompts with lowest rewards are selected. Specif-
ically, we run inference of the base model on a prompt
dataset, generating four results per prompt, compute the
MRC rewards for each result, and sort the prompts accord-
ing to their average reward. This is derived from obser-
vation that, for certain prompts, the model generates nearly
optimal outputs with rewards close to the rewards of ground
truth views of a 3D asset [12] (Fig. 8). Thus, the curated
lowest-reward prompts have substantial room for 3D con-
sistency improvement and prevent learning stagnation. This
approach not only brings more efficient training but also
provides a more generalized improvement in 3D consis-
tency to the testing set.

Creating New Training Prompt Set The prompt dataset
from DreamFusion [40], which contains 414 prompts and
is commonly used as testing set. To employ the Dream-
Fusion prompt set also as our testing set, we create a new
prompt dataset with ChatGPT4 [35]. Following our training
data curation strategy, we first sort the DreamFusion [40]
prompts according to their rewards attained by the base
Instant3D [24] model. We provide the sorted prompt set
to ChatGPT4, and ask it to summarize the characteristics
of the low-reward prompts by looking at the low-reward,
median-reward, and high-reward prompts. ChatGPT4 sum-
marizes low-reward prompts to possess properties of “com-

plex and creative”. We then ask it to generate 100 low-
reward prompts that are both complex and creative, and an-
other 100 low-reward prompts that are “complex but not too
creative”. For each set, again, we sort the prompts accord-
ing to their rewards, and select those with the lowest re-
wards to be our training prompt set. Our best results are
obtained with the “complex but not too creative” set.

C.2. Training Details

All of our RL finetuning experiments are run on 6
AWS EC2 P4de nodes with 8 NVIDIA A100-SXM4-80GB
GPUs, a total of 48 GPUs. We use batch size of 768, which
is 2x compared to that of DDPO. One experiment takes 16.5
hours to reach 55 epochs. The number of finetuning epochs
is determined by our KL-divergence early-stopping mecha-
nism, which we empirically choose to be 3.2e−4 according
to the level of reward overoptimization shown on qualitative
results.

We use minibatches of size 8 during sampling and 4 dur-
ing training due to the limited GPU memory. The total
batch size of 768 is evenly distributed among each GPU,
so that the per GPU batch size is 16. The model samples
two minibatches of size 8 on all GPUs to reach the total
batch size. Similarly, the model accumulates gradients over
four minibatches of size 4 on all GPUs, before synchroniz-
ing the gradients and performing an optimizer step. We use
a per prompt stat tracker with windows of size 76, so that
it roughly tracks all the rewards per prompt ever 3 epochs.
This is much larger than DDPO’s default tracking window
of size 32 for better training stability. The coefficients for
the advantage terms in Eq. (8) are α = 1 and β = 0.2.

The rest of our RL finetuning setup follows DDPO [4, 5].
We use the AdamW [29] optimizer with a fixed learning
rate 3e − 4, β1 = 0.9, β2 = 0.999, ϵ = 1e − 8 and a
weight decay of 1e−4. The high learning rate is paired with
Low Rank Adaptation (LoRA) [18] finetuning with rank 4,
which significantly reduces the memory and computation



requirements for finetuning. We freeze all networks in the
base model and set their precision to fp16, and only fine-
tune the LoRA weights of the unet under fp32 via mixed
precision training.

Our base text-to-multiview diffusion model setup fol-
lows Instant3D [24], which uses the same architecure as
SDXL [39]. It produces images of resolution 1024x1024,
which contains four images of resolution 512x512 tiled in
a 2-by-2 fashion. Instant3D requires 100 denoising steps
during inference, doubling the required computation than
the default 50 steps for SDXL. It uses Classifier Free Guid-
ance [16] with a scale of 5.0

Our code is mainly based on DDPO’s [5] official imple-
mentation, the ddpo-pytorch [4] Github repository, which
uses Hugginface diffusers [50] and PyTorch [37] libraries.
Our KL divergence regularization implementation is in-
spired by the codebases of DeepSpeedChat [55], TRL [51],
and DPOK [15]. We thank the authors of these repositories
for releasing the high-quality implementations and promot-
ing open-sourced research. We are going to release the code
for computing MRC and our improved DDPO implementa-
tion. However, due to the fact that Sparse View LRM and
Instant3D do not plan to release their code, we have to leave
these as empty, abstract functions in our released code.

C.3. Experiment Details

All quantitative and qualitative experiments and the
user study uses the results from evaluating each model on
the DreamFusion [40] testing prompt set, containing 415
prompts, for 4 times, which equals to 1660 results per
model.

For fair qualitative comparisons, results from each model
are generated from the the same initial noise. Since
Instant3D-20K and -100K and Carve3D are all finetuned
from Instant3D-10K, their output tend to represent the same
object when given the same initial noise (e.g. Figs. 1, 4
and 11).

Since Zero123++ [47] and SyncDreamer [28] are
image-to-multi-view diffusion models, we let them take
one of Carve3D’s output image and their input image-
conditioning. Therefore, their output has the same level of
prompt alignment, texture details, and diversity as Carve3D.

C.4. User Study Details

To run the study we randomly selected 20 unseen testing
prompts. For each text prompt, we generated a pair of data
from both the base and the finetuned models with the same
initial noise. Then, we provided both the tiled 4-view image
and the turntable video of the reconstructed NeRF to par-
ticipants and asked them the following two questions: (1)
Which result is more 3D-consistent? and (2) Which result
is better aligned with the prompt?

D. Additional MRC Metric Experiments

Distortion Types Here, we show the full results for the
metric experiments for the inpainting distortion (Fig. 14)
discussed in Sec. 3.3 and Figs. 7 and 8. We also conduct
metric experiments with other distortions types: azimuth
rotation (Fig. 15, and elevation rotation (Fig. 16). In az-
imuth and elevation rotation, for one out of the four views,
we rotate the object with an azimuth or elevation rotation
by 3.6 or 4 degrees, before rendering that view, and also use
the original camera extrinsic matrix as the input to Sparse
View LRM [17, 24]. The quantitative results matches our
expectations, where MRC, i.e. with LPIPS, monotonically
decreases as we intentionally add more distortion.

LPIPS vs. Other Image Similarity Metrics Here, we
compare substituting LPIPS [57] with L1, L2, PSNR,
and SSIM in the Multi-view Reconstruction Consistency
(MRC) metric experiments on all distortion types. In the
inpainting distortion experiments (Fig. 14), which is the
most representative of diffusion model’s inconsistencies,
LPIPS is more linear than other pixel level image metrics.
In azimuth and elevation distortion experiments (Figs. 15
and 16), all image metrics shows monotonically decreas-
ing pattern, while pixel-level image metrics are more linear.
This is expected as the distortion is pixel-aligned and more
structured.

E. Ablation Studies

Bounding Box Normalization As shown in Fig. 9, when
the bounding box normalization is removed from MRC,
the model would trivially increase the reward by reducing
the size of the foreground object on the white background.
This would lead to the model generating images containing
only the white background, after longer finetuning. With
bounding box normalization, the model would learn the
harder task of improving the reconstruction consistency of
the multi-view images.

KL Divergence Regularization As shown in Fig. 10 Our
KL divergence regularization does not sacrifice the model’s
efficiency on improving its reward. Without KL divergence
regularization, the KL divergence grows much faster. As
discussed in Sec. 4.2, this leads to degraded object identity
and loss of texture details.

F. Additional Related Work

F.1. 3D Generation with 2D Diffusion Models

3D models can be derived from either single or multi-
view images by optimizing the Score Distillation Sampling
(SDS) loss [40, 52]. However, the optimization process is
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Figure 7. Qualitative correlation between MRC and multi-view inconsistency with increasing intensity, introduced by inpainting with
increasing mask sizes. Left: the four ground truth views. Right: the 4th view is inpainted with increasing area sizes, i.e. 0×0, 50×50 and
110×110 pixels. The top row is the image after inpainting and the bottom row is the image rendered from the NeRF reconstructed with the
top inpainted 4th view and the other 3 original GT views. We mark the inpainting area with blue and red boxes. Since the lion’s right paw
in the inpainted 4th views look different from the other three original views, its shape is broken in the NeRF and the rendered views. This
difference is captured in MRC’s image dissimilarity metric.

Figure 8. Quantitative correlation between MRC and multi-
view inconsistency with increasing intensity, for the object shown
in Figure 7. As inconsistency intensity rises, MRC also monoton-
ically increases.

notably time-consuming, requiring multiple hours to gen-
erate a single 3D asset. In contrast, Large Reconstruction
Model (LRM) [17], trained on the extensive 3D dataset Ob-
javerse [12], can efficiently reconstruct NeRF models from
a single image in a feed-forward manner. In this work, we
focus exclusively on text-to-3D using feed-forward sparse-
view NeRF reconstruction, specifically employing sparse-
view LRM [24]. This choice is driven by its signifi-
cantly faster performance compared to SDS-based opti-
mization methods and its superior quality relative to feed-
forward text-to-3D diffusion models [19, 34]. We choose
Instant3D [24] as our base multi-view diffusion model, ow-
ing to its light-weight Supervised Finetuning (SFT) that pre-
serves the strong semantic understanding and high-quality
image generation capabilities of SDXL [39], similar to the
instruction finetuning stage in InstructGPT [36].
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Figure 9. Alation study on the boundingbox normalization of
LPIPS for MRC evaluation. Top: with boundingbox normaliza-
tion, the size of the foreground object is similar that of the base
model. Bottom: without boundingbox normalization, the size of
the foreground object after RL finetuning is substantially smaller
than that of the base model.

F.2. RLFT of LLMs and Diffusion Models

Reinforcement Learning (RL) has been widely used to
finetune large pre-trained models in Natural Language Pro-
cessing [2, 3, 22, 36] and Computer Vision [5, 11, 15,
38, 41, 58], due to its advantage over Supervised Finetun-
ing (SFT). SFT directly fits a model to the distribution of
the SFT dataset containing inputs and ground-truth target
data, which unavoidably causes some degree of distribution
shift [44]. On the contrary, based on an objective function



Figure 10. Ablation study on KL divergence regularization. Top:
KL Divergence between the base model and the finetuned model
on testing set. Bottom: mean MRC reward on testing set. Our KL
divergence regularization does not sacrifice the model’s sample ef-
ficiency of the reward curve. The finetuned model has a lower KL
divergence to the base model when using KL divergence regular-
ization than without, which prevents degraded object identity and
reduced texture details.

and a dataset containing only inputs, Reinforcement Learn-
ing Finetuning (RLFT) optimizes a model beyond the limi-
tation of a SFT dataset by using its own outputs and effec-
tively mitigates distribution shift [7].

RLFT of LLMs Large Language Models (LLMs) like
GPT-3 [6] are pre-trained on the next-word prediction task
on an internet-scale corpus. While the autoregressive pre-
training is a powerful self-supervised objective that allows
LLMs to extract substantial knowledge from the internet-
scale unlabeled dataset, pre-trained LLMs can only perform
the corresponding text completion task. The pre-training
lacks an objective that allows LLMs to respond to text
prompts. In InstructGPT [36], the paper behind ChatGPT
3.5, a two-stage finetuning solution is proposed to align
GPT-3 to answer instructions according to human prefer-
ences. In the first stage, InstructGPT employs SFT with
a small dataset of hand-crafted prompt-answer pairs. While
SFT changes the model’s output distribution from text com-
pletion to answering instructions, it also introduces halluci-
nation [44]. This is because the output distribution drifts
too much towards the instruction-following dataset, and the
model tries to imitate the behavior in the data and always
provide plausible answers even when the model is uncertain
about the answer [44]. To address this issue, InstructGPT
opts for a light-weight SFT stage and relies on RLFT in

the second stage, using a human-preference reward model.
This approach provides general alignment to human val-
ues and causes minimal hallucination [44], because RLFT
does not rely on a potentially biased dataset containing fixed
ground-truth answers, but instead learns the general concept
of human-preference through the reward model. The suc-
cess of InstructGPT [36] and its analogy to the distribution
shift problem in multi-view SFT [24] motivate us to pursue
RLFT for 2D diffusion models.

RLFT of Diffusion Models Witnessing the success of
RLFT methods in LLMs [2, 3, 22, 36], recently, a few
RLFT algorithms have been proposed for text-to-image dif-
fusion models. RWR [23] is the first work to bring the hu-
man feedback reward finetuning idea to diffusion models.
While RWR only finetunes stable diffusion [42] via a sin-
gle log probability of the entire denoising process, multi-
step RLFT can be facilitated by treating the denoising pro-
cess as a multi-step MDP, as demonstrated in DDPO [5] and
DPOK [15]. Our RLFT is based on DDPO [5], while our
KL-divergence regularization is similar to DPOK [15] and
InstructGPT [36]. Furthermore, RWR, DDPO, and DPOK
all finetune SD-1.5 [42], while we finetune a much larger
diffusion model based on SDXL. We also study training
stability, a notorious challenge in both traditional RL and
RLFT [7, 60], and scaling laws [20] for RLFT.

G. Broader Impacts and Future Work
Our Multi-view Reconstruction Consistency (MRC)

metric can serve as a valuable tool for evaluating any multi-
view generative methods and guiding future developments
in the field. Although we only demonstrate our Reinforce-
ment Learning Finetuning (RLFT) with MRC on one multi-
view diffusion model [24], it can be directly adapted to
other text-to-multi-view diffusion models; such adaptation
only requires tuning a few hyperparameters related to the
scaling laws for diffusion model RLFT (Sec. 4.2.3). Our
surprising finding behind the choice of REINFORCE [54]
over PPO [45] for better training stability could also be ap-
plied in broader RLFT scenarios.

As AI models grow more powerful, it becomes more
important to evaluate and improve their safety and reduce
their bias. RLFT has been widely used for Large Language
Model (LLM) alignment as it allows models to be finetuned
with hard-to-specify objectives and its results are generaliz-
able without undermining the base model’s knowledge. As
the first work to use RLFT for text-to-3D and on diffusion
models at the SDXL scale, we hope Carve3D can inspire
more alignment research in the computer vision community.

Carve3D is limited by the reconstruction quality of
Sparse View Large Reconstruction Model (LRM) [17, 24].
Because its reconstruction is not perfect, this leads to non-
zero MRC metric on GT views as shown in Figs. 14 to 16.



Due to this limitation of Sparse View LRM, Carve3D RL
finetuned model can produce less high-frequency details
than the base model in order to lower the image distance
to the NeRF rendered views. This might be solved by using
a future sparse view reconstructor that can preserve more
details or training a dedicated model for computing MRC.

Further increasing data size and batch size to further
improve reconstruction consistency is possible. However,
in this work, we are limited by the high computation cost
of SDXL [39], Instant3D’s 100 denoising steps, and the
high number of samples needed in DDPO. A few concur-
rent works could address this challenge. It is possible to
substantially reduce the computation cost by switching to
Consistency Models for one/few-step inference (e.g., LCM-
LoRA [30]). In addition, we can also switch from DDPO to
direct backpropagation of reward (e.g. Align-Prop [41], and
DRaFT [11]) to reduce the number of samples needed. We
leave these extensions as future work.
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Figure 11. Qualitative comparison of MVDream [46], Instant3D [24] with 10K (the base model), 20K, and 100K SFT steps, Carve3D (ours,
finetuned from Instant3D-10K), Zero123++ [47], and SyncDreamer [28] (7 models in 7 columns) on 4 prompts (in 4 rows, numbered as 1-4,
separated by dotted line). In each row, we show their generated multi-view images in the 2-by-2 grid (denoted as MV), reconstructed NeRF
and extracted mesh (denoted as RM) when given the text prompt (denoted as TP). MVDream, Zero123++, and SyncDreamer generates
inconsistent multi-view images and reconstruction artifacts (highlighted in red). For each result, we use the same randomly sampled initial
noise for all models to ensure the comparison is fair. We let Zero123++ and SyncDreamer to use one of Carve3D’s output multi-view
images as their input image conditioning. Instant3D-10K, -20K, and -100K and Carve3D demonstrates progressively better multi-view
consistency and reconstruction quality. Instant3D-10K, Carve3D, Zero123++, and SyncDreamer exhibits the best texture details and
realism, whereas Instant3D-20K and -100K with prolonged SFT steps compromise those qualities.
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Figure 12. Qualitative comparison of Instant3D (the base model) and Carve3D (ours, finetuned from Instant3D) on 12 prompts (in 12
blocks, numbered as 1-12, separated by dotted line). In each block, we show the their generated multi-view images in the 2-by-2 grid
(denoted as MV), the reconstructed NeRF and the extracted mesh (denoted as RM) when given the text prompt (denoted as TP). For each
result, we use the same randomly sampled initial noise for all models to ensure the comparison is fair. We draw red boxes on the NeRF
and the extracted mesh to highlight the artifacts in the NeRF and the mesh, resulting from the inconsistencies in the multi-view images.
Carve3D maintains the detailed texture and provides improved multi-view consistency and higher quality NeRF than the base Instant3D.
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Figure 13. Qualitative comparison of Instant3D (the base model) and Carve3D (ours, finetuned from Instant3D) on 4 prompts (in 4 rows,
numbered as 1-4, separated by the dotted line) demonstrating diversity. In each row, we show 3 results from each model, including the
generated multi-view images in the 2-by-2 grid (denoted as MV), the reconstructed NeRF and the extracted mesh (denoted as bottom)
when given the prompt (denoted as middle). For each result, we use the same randomly sampled initial noise for all models to ensure the
comparison is fair. Our RLFT maintains the diversity of the base Instant3D model, while improving the consistency.



Figure 14. Quantitative correlation between five variants of MRC (our default LPIPS, as well as PSNR, SSIM, L1, and L2) and incon-
sistency introduced by inpaint distortion with increasing intensity on four objects. We take negative of the similarity metrics (PSNR and
SSIM) for easy comparisons to the distance metrics (LPIPS, L1, and L2). LPIPS constantly exhibits monotonically increasing pattern with
respect to the increased inconsistency, while other image metrics do not.



Figure 15. Quantitative correlation between five variants of MRC (our default LPIPS, as well as PSNR, SSIM, L1, and L2) and inconsis-
tency introduced by azimuth rotation distortion with increasing intensity on four objects. We take negative of the similarity metrics (PSNR
and SSIM) for easy comparisons to the distance metrics (LPIPS, L1, and L2). All metrics constantly exhibits monotonically, steadily
increasing pattern with respect to the increased inconsistency.



Figure 16. Quantitative correlation between five variants of MRC (our default LPIPS, as well as PSNR, SSIM, L1, and L2) and incon-
sistency introduced by elevation rotation distortion with increasing intensity on four objects. We take negative of the similarity metrics
(PSNR and SSIM) for easy comparisons to the distance metrics (LPIPS, L1, and L2). All metrics constantly exhibits monotonically,
steadily increasing pattern with respect to the increased inconsistency.
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