A. Appendix

A.l. Proof of Unbiasedness and Convergence for
JointSQ

Our quantizer selection is similar to the random uni-
form quantizer as referenced in [1]. We first prove the
unbiasedness and convergence for the general form of Co-
compressor. For a gradient vector g, the i-th gradient ele-
ment is quantized as follows:

Qs [9:] = llgll - sgn (g:) - € (g4, 8)

where ||g|| is the I3 norm of g; sgn(g;) = {+1,—1} is
the sign of g;; s is the quantization level. If we use b bits
to quantize g;, we will use one bit to represent its sign and
the other b — 1 bits to represent ¢ (g;, s), thus resulting in a
quantization level s = 2°~1—1. And ((g;, 5) is an unbiased
stochastic function that maps scalar |g;| /||g|| to one of the
valuesinset {0,1/s,2/s,...,s/s}t if |gi| /l|gll € [I/s, (I+
1)/s], we have:

_JUs
C(gias) - {(l + 1)/8,

with probability 1 — p,.,

|gil —1

with probability p, = s el

So we have:

BLC (o)l =1 1= 5120+

I+1 [|94 l] _ gil
— s —1| = .
Il Il

Then:

E[¢ (919 = B[(9 9))° + V€ (gi,9)

_ ik 1 1
= Jgi? T =Pt

|gi|2 e
el

Considering that Q; (¢;) = ||g||-sgn (¢:)-¢ (gi, s), we have:

E[IQuell’] = ZE[Hgnc%)]
_an?('ﬁzllg 41>

= |lgl* +

4 2 Hg||2

We can get:

£ Qe n e
B [lulell’] < 1+ 5] el

In the proof presented in [!], the sparsifier is set as the
Rand-k sparsifier with an amplification factor of d/k. Here,
we generalize it to a general unbiased sparsifier. For the
stochastic gradient vector g, with a sparsification parameter
of k, we have the following expression:

E[Sk(g)] = 8.
E[Isk@)I°] < lgl®

Therefore, for the general form of the Co-compressor
that utilizes uniform random quantization and unbiased
sparsification, we obtain:

E[g] =E[Qs [Sk(g)]] = E[Sk(g)] = &, M

E (18] = E [IQs [Sk(@)]I] < [1 + ’1} ISk(e)Il

[1 " } el
2)

Eq. (17) demonstrates the unbiasedness for Co-compressor
and Eq. (18) provides the convergence analysis for Co-
COMPressor.

Our JointSQ framework treats sparsity as 0-bit quanti-
zation and introduces the idea of mixed-precision quantiza-
tion. We split the gradient vector g into several subgradients
g; of length k; and quantize them with different bit-width
b;. For example, the gradient vector {0.1,0.2,0.3,0.4} can
be split into {0.1,0.2} and {0.3,0.4}. For ease of analysis,
we set the remaining positions of the subgradients to O to
match the length of the original gradient vector. Thus, we
have g = Y | g;, where n is the number of quantization
bit levels. For JointSQ, we analyze its unbiasedness:

5| =F Zg}] :ZE(g)

Based on the unbiasedness for the general form of the Co-
compressor, as shown in Eq. (17), we know that E (g;) =
g;. So we have:

=Y si-g 3)
=1

Based on the definition of the Euclidean norm (L2 norm),
we have ||g||? = 31, lle;|*. Therefore:

_E _znjngiuﬂ
= > E sl

E[|gl

Based on the convergence for the general form of the Co-
compressor, as shown in Eq. (18), we obtain:

2 k 2
B let”] < [1+ 5] het®.

Therefore:

. n k 5
Pl <> |1+ g el @
i=1
Eq. (19) demonstrates the unbiasedness for JointSQ and Eq.
(20) provides the convergence analysis for the JointSQ.

A.2. Proof of Improved Convergence for JointSQ

To contrast with the general form of a Co-compressor,
we assume that the gradient tensor g is compressed using
a Co-compressor with sparsity parameter k£ and quantiza-
tion bit-width b. According to Eq. (3) in the main text, the
compression noise in this case is obtained as follows:

k

h(k,b) £
_ k=20l LlalP L gl
T lel” TP lel” TP (el

In this particular case, we consider a scenario where we only
change the quantization bit-width of two gradient elements
in the compressed gradient. We quantize one gradient ele-
ment, denoted as gy, which is originally quantized to b bits,
to b+ x bits, where x € N*, and we quantize another gradi-
ent element, denoted as go, to b — z bits. According to Eq.
(6) in the main text, the compression noise in this case can
be derived as follows:

k=2]g? 1 [lou?
4 gl 4 flg]?

The variation of compressed noise is:

1 1 g3 1 1 g3
o= (g -3) i (5 3)
dbte b) |g|? © \4bmr 4P) |glf?

By solving the inequality AR’ < 0, we obtain the following
result:

2
L llg2|l

B (k,b) £ .
4= ||g|2

lg1| > 2% |ga|. ®)
This provides a case where the convergence for JointSQ is
superior to the general form of Co-compressor. In fact, this
conclusion can be generalized to reducing the bit-width of
multiple gradient elements to improve the bit-width of mul-
tiple gradient elements:
ny

4901' o 1 9 n2 v, 9
>l > Y @ = 1lgf

i=1 j=1

where 1 + 2 + ..y, = Y1 + Y2 + ...Yn,. This finding
demonstrates the significant contribution of JointSQ in ex-
panding the solution space and mitigating the occurrence of
suboptimal solutions in Co-compressor.

A.3. Core Algorithm of JointSQ
A.3.1 Greedy Allocation

Algorithm 1 Greedy Allocation

Input: Assignable bit-width ¢, gradient vector g.
QOutput: Mixed-Precision quantization mask x, gradient sorting
results SP’.
1: Remain_bit <— c// Remain backpack capacity.
2: x41 < 1// Default Selection of 0-bit per Group.
3: B+ [0,2,4,8],b; € B/l Available quantization bit widths.

w 2 . .
Lo H;ﬁ’ w;; < bj // Profit and weight of items.

. SP < argsort(2i4=Pii=1y j/ Sort by Incremental Profit

Wij—Wi j—1

4: pij

W

Density.
: SP' «+ SP
: while Remain_bit > 0 do
i,5 < SPI[0],zi; < 1,z; ;-1 < 0// Select the
9: item with the highest rank.
10: SP «+ Update(SP) // Remove the j-th item in
11: i-th group from the selection pool.
12: Remain_bit <~ Remain_bit — w; ;
13: end while
14: return x, SP’

© 3

A.3.2 Reallocation

Algorithm 2 Reallocation

Input: Learnable Parameter R, assignable bit-width ¢, Mixed-
Precision quantization mask x, gradient vector g, sorting re-
sults in Greedy Allocation S P.

Output: Mixed-Precision quantization Mask z, reduction of
compression noise A.

I: k % // Constraint Value & for Length.

2: k <+ Zle 2;22 x4; I/ Get k from the Last Reallocation.

3: h < 0, f < 0// Initialize the compression noise reduction

amount h and the fine-tuning flag f.

4: Ak = k — k // Retrieve the number of fine-tuning iterations.

5: fori = 1to |Ak| do

6: ', f <« finetuning(z, SP, Ak, f) // Fine-tuning the
mask according to the rules mentioned in the main text.

7. Ah = h(g,z') — h(g,z) // Calculate the difference in
compression noise before and after fine-tuning.

8: if Ah < O then

9: 2 < 2’ // Keep only the fine-tuning attempts
10: that result in a reduction of compression noise.
11: h < h + Ah // Update the reduction of
12: compression noise.

13: endif
14: end for

15: return x, h

Algorithm 3 Fine-tuning

Input: Mixed-Precision quantization mask x, sorting results in
Greedy Allocation SP, difference between the constraint
length and the current length Ak, fine-tuning flag f.

Output: Mixed-Precision quantization mask x.

1: if Ak < O then

2 if f = 0 then

3: Tiq,ja O,mil,jg —1
4 Tig,jo < O,IiQ,jg —1
5 Tig gy < 0,Ti5.5, < 1
6 f+1

7 /I i1 represents the least ranked 8-bit gradient, i repre-

sents the highest ranked 2-bit gradient, and i3 represents

the highest ranked 0-bit gradient.

8: else

9: Liqy .55 0,$i1,j2 +—1
10: Tig, i1 O,xiQ,jz ~—1
11: f<0

12: // i1 represents the least ranked 4-bit gradient, i represents
the highest ranked 0-bit gradient.

13: endif

14: else

15: if f = 0 then

16: Tiq,jg O,$i17]‘4 —1
17: Ly, jg 0,$i2,j2 +—1
18: Tig,jo 0,:131‘3,3'1 ~—1
19: f+1

20: // 41 represents the highest ranked 4-bit gradient, i2 repre-
sents the least ranked 4-bit gradient, and i3 represents the
least ranked 2-bit gradient.

21: else

22: Tiy,jo < 0,Tin,55 < 1
23: Tig,jo waig,jl +— 1
24: f+<0

25: // 41 represents the highest ranked 2-bit gradient, 72 repre-
sents the least ranked 2-bit gradient.

26: endif

27: end if

28: return x, f

A.3.3 JointSQ in Distributed Learning

Algorithm 4 JointSQ in Distributed Learning

Input: The gradients for the current iteration of training g, the
compression ratio C, the number of Reallocation performed
T, the number of nodes in distributed training N, the initial
value Ry, the learning rate of R 6.
Output: The compressed gradients &.
1: On each node:
2: for each layer’s gradient vector g; in g do
3: c+ 32xlen(g) xC
z, SP < GreedyAllocation(c, g1)
fori =1toT do
Zs, hi < Reallocation(R;—1,¢,2:-1, 81, SP)
R; < Ri—1 + On(hi — hi—1).
end for
9: g1 <+ Quantize(g,)
10: end for
11: All-reduce: g < SN | &
12: return g

[A

References

[1] Guangfeng Yan, Tan Li, Shao-Lun Huang, Tian Lan, and
Lingi Song. AC-SGD: Adaptively compressed SGD for
communication-efficient distributed learning. [EEE Jour-
nal on Selected Areas in Communications, 40(9):2678-2693,
2022. 1

