
A. Appendix
A.1. Proof of Unbiasedness and Convergence for

JointSQ

Our quantizer selection is similar to the random uni-
form quantizer as referenced in [1]. We first prove the
unbiasedness and convergence for the general form of Co-
compressor. For a gradient vector g, the i-th gradient ele-
ment is quantized as follows:

Qb [gi] = ∥g∥ · sgn (gi) · ζ (gi, s) ,

where ∥g∥ is the l2 norm of g; sgn (gi) = {+1,−1} is
the sign of gi; s is the quantization level. If we use b bits
to quantize gi, we will use one bit to represent its sign and
the other b− 1 bits to represent ζ (gi, s), thus resulting in a
quantization level s = 2b−1−1. And ζ (gi, s) is an unbiased
stochastic function that maps scalar |gi| /∥g∥ to one of the
values in set {0, 1/s, 2/s, . . . , s/s}: if |gi| /∥g∥ ∈ [l/s, (l+
1)/s], we have:

ζ (gi, s) =

{
l/s, with probability 1− pr,

(l + 1)/s, with probability pr = s |gi|
∥g∥ − l.

So we have:

E [ζ (gi, s)] =
l

s

[
1− s

|gi|
∥g∥

+ l

]
+

l + 1

s

[
s
|gi|
∥g∥

− l

]
=

|gi|
∥g∥

.

Then:

E
[
ζ (gi, s)

2
]
= E [ζ (gi, s)]

2
+ V [ζ (gi, s)]

=
|gi|2

∥g∥2
+

1

s2
p(1− p)

≤ |gi|2

∥g∥2
+

1

4s2
.

Considering that Qs (gi) = ∥g∥·sgn (gi)·ζ (gi, s), we have:

E
[
∥Qb[g]∥2

]
=

d∑
i=0

E
[
∥g∥2ζ (gi, s)2

]
≤

d∑
i=0

∥g∥2
(

|gi|2

∥g∥2
+

1

4s2

)

= ∥g∥2 + d

4s2
∥g∥2.

We can get:

E [Qb[g]] = g,

E
[
∥Qb[g]∥2

]
≤
[
1 +

d

4b

]
∥g∥2.

In the proof presented in [1], the sparsifier is set as the
Rand-k sparsifier with an amplification factor of d/k. Here,
we generalize it to a general unbiased sparsifier. For the
stochastic gradient vector g, with a sparsification parameter
of k, we have the following expression:

E [Sk(g)] = g,

E
[
∥Sk(g)∥2

]
≤ ∥g∥2.

Therefore, for the general form of the Co-compressor
that utilizes uniform random quantization and unbiased
sparsification, we obtain:

E[ĝ] = E [Qb [Sk(g)]] = E [Sk(g)] = g, (1)

E
[
∥ĝ∥2

]
= E

[
∥Qb [Sk(g)]∥2

]
≤
[
1 +

k

4b

]
∥Sk(g)∥2

=

[
1 +

k

4b

]
∥g∥2.

(2)
Eq. (17) demonstrates the unbiasedness for Co-compressor
and Eq. (18) provides the convergence analysis for Co-
compressor.

Our JointSQ framework treats sparsity as 0-bit quanti-
zation and introduces the idea of mixed-precision quantiza-
tion. We split the gradient vector g into several subgradients
gi of length ki and quantize them with different bit-width
bi. For example, the gradient vector {0.1, 0.2, 0.3, 0.4} can
be split into {0.1, 0.2} and {0.3, 0.4}. For ease of analysis,
we set the remaining positions of the subgradients to 0 to
match the length of the original gradient vector. Thus, we
have g =

∑n
i=1 gi, where n is the number of quantization

bit levels. For JointSQ, we analyze its unbiasedness:

E[ĝ] = E

[
n∑

i=1

ĝi

]
=

n∑
i=1

E (ĝi) .

Based on the unbiasedness for the general form of the Co-
compressor, as shown in Eq. (17), we know that E (ĝi) =
gi. So we have:

E[ĝ] =

n∑
i=1

gi = g. (3)

Based on the definition of the Euclidean norm (L2 norm),
we have ∥g∥2 =

∑n
i=1 ∥gi∥2. Therefore:

E
[
∥ĝ∥2

]
= E

[
n∑

i=1

∥gi∥2
]

=

n∑
i=1

E
[
∥gi||2

]
.

Based on the convergence for the general form of the Co-
compressor, as shown in Eq. (18), we obtain:

E
[
∥gi∥2

]
⩽

[
1 +

k

4b

]
∥gi∥2 .

Therefore:

E
[
∥ĝ∥2

]
≤

n∑
i=1

[
1 +

k

4b

]
∥gi∥2 . (4)

Eq. (19) demonstrates the unbiasedness for JointSQ and Eq.
(20) provides the convergence analysis for the JointSQ.

A.2. Proof of Improved Convergence for JointSQ

To contrast with the general form of a Co-compressor,
we assume that the gradient tensor g is compressed using
a Co-compressor with sparsity parameter k and quantiza-
tion bit-width b. According to Eq. (3) in the main text, the
compression noise in this case is obtained as follows:

h(k, b) ≜
k

4b

=
k − 2

4b
∥g′∥2

∥g∥2
+

1

4b
∥g1∥2

∥g∥2
+

1

4b
∥g2∥2

∥g∥2
.

In this particular case, we consider a scenario where we only
change the quantization bit-width of two gradient elements
in the compressed gradient. We quantize one gradient ele-
ment, denoted as g1, which is originally quantized to b bits,
to b+x bits, where x ∈ N∗, and we quantize another gradi-
ent element, denoted as g2, to b − x bits. According to Eq.
(6) in the main text, the compression noise in this case can
be derived as follows:

h′(k, b) ≜
k − 2

4b
∥g′∥2

∥g∥2
+

1

4b+x

∥g1∥2

∥g∥2
+

1

4b−x

∥g2∥2

∥g∥2
.

The variation of compressed noise is:

∆h′ =

(
1

4b+x
− 1

4b

)
g21

∥g∥2
+

(
1

4b−x
− 1

4b

)
g22

∥g∥2
.

By solving the inequality ∆h′ < 0, we obtain the following
result:

|g1| > 2x |g2| . (5)

This provides a case where the convergence for JointSQ is
superior to the general form of Co-compressor. In fact, this
conclusion can be generalized to reducing the bit-width of
multiple gradient elements to improve the bit-width of mul-
tiple gradient elements:

n1∑
i=1

4xi − 1

4xi
|gi|2 >

n2∑
j=1

(4yj − 1) |gj |2 .

where x1 + x2 + ...xn1
= y1 + y2 + ...yn2

. This finding
demonstrates the significant contribution of JointSQ in ex-
panding the solution space and mitigating the occurrence of
suboptimal solutions in Co-compressor.

A.3. Core Algorithm of JointSQ

A.3.1 Greedy Allocation

Algorithm 1 Greedy Allocation
Input: Assignable bit-width c, gradient vector g.
Output: Mixed-Precision quantization mask x, gradient sorting

results SP ′.
1: Remain bit← c // Remain backpack capacity.
2: xi1 ← 1 // Default Selection of 0-bit per Group.
3: B ← [0, 2, 4, 8], bj ∈ B // Available quantization bit widths.

4: ρij ← 4
wij−1
4
wij

g2i
∥g∥2 , wij ← bj // Profit and weight of items.

5: SP ← argsort(
pij−pi,j−1

wij−wi,j−1
) // Sort by Incremental Profit

Density.
6: SP ′ ← SP
7: while Remain bit > 0 do
8: i, j ← SP [0], xi,j ← 1, xi,j−1 ← 0 // Select the
9: item with the highest rank.

10: SP ← Update(SP) // Remove the j-th item in
11: i-th group from the selection pool.
12: Remain bit← Remain bit− wi,j

13: end while
14: return x, SP ′

A.3.2 Reallocation

Algorithm 2 Reallocation
Input: Learnable Parameter R, assignable bit-width c, Mixed-

Precision quantization mask x, gradient vector g, sorting re-
sults in Greedy Allocation SP .

Output: Mixed-Precision quantization Mask x, reduction of
compression noise h.

1: k̄ ← Rc
8

// Constraint Value k̄ for Length.
2: k ←

∑d
i=1

∑4
j=2 xij // Get k from the Last Reallocation.

3: h ← 0, f ← 0 // Initialize the compression noise reduction
amount h and the fine-tuning flag f .

4: ∆k = k − k̄ // Retrieve the number of fine-tuning iterations.
5: for i = 1 to |∆k| do
6: x′, f ← finetuning(x, SP,∆k, f) // Fine-tuning the

mask according to the rules mentioned in the main text.
7: ∆h = h (g, x′) − h(g, x) // Calculate the difference in

compression noise before and after fine-tuning.
8: if ∆h < 0 then
9: x← x′ // Keep only the fine-tuning attempts

10: that result in a reduction of compression noise.
11: h← h+∆h // Update the reduction of
12: compression noise.
13: end if
14: end for
15: return x, h

Algorithm 3 Fine-tuning
Input: Mixed-Precision quantization mask x, sorting results in

Greedy Allocation SP , difference between the constraint
length and the current length ∆k, fine-tuning flag f .

Output: Mixed-Precision quantization mask x.
1: if ∆k < 0 then
2: if f = 0 then
3: xi1,j4 ← 0, xi1,j3 ← 1
4: xi2,j2 ← 0, xi2,j3 ← 1
5: xi3,j1 ← 0, xi3,j2 ← 1
6: f ← 1
7: // i1 represents the least ranked 8-bit gradient, i2 repre-

sents the highest ranked 2-bit gradient, and i3 represents
the highest ranked 0-bit gradient.

8: else
9: xi1,j3 ← 0, xi1,j2 ← 1

10: xi2,j1 ← 0, xi2,j2 ← 1
11: f ← 0
12: // i1 represents the least ranked 4-bit gradient, i2 represents

the highest ranked 0-bit gradient.
13: end if
14: else
15: if f = 0 then
16: xi1,j3 ← 0, xi1,j4 ← 1
17: xi2,j3 ← 0, xi2,j2 ← 1
18: xi3,j2 ← 0, xi3,j1 ← 1
19: f ← 1
20: // i1 represents the highest ranked 4-bit gradient, i2 repre-

sents the least ranked 4-bit gradient, and i3 represents the
least ranked 2-bit gradient.

21: else
22: xi1,j2 ← 0, xi2,j3 ← 1
23: xi2,j2 ← 0, xi2,j1 ← 1
24: f ← 0
25: // i1 represents the highest ranked 2-bit gradient, i2 repre-

sents the least ranked 2-bit gradient.
26: end if
27: end if
28: return x, f

A.3.3 JointSQ in Distributed Learning

Algorithm 4 JointSQ in Distributed Learning
Input: The gradients for the current iteration of training g, the

compression ratio C, the number of Reallocation performed
T , the number of nodes in distributed training N , the initial
value R0, the learning rate of R δh.

Output: The compressed gradients ĝ.
1: On each node:
2: for each layer’s gradient vector gl in g do
3: c← 32 ∗ len (gl) ∗ C
4: x, SP ← GreedyAllocation(c,gl)
5: for i = 1 to T do
6: xi, hi ← Reallocation(Ri−1, c, xi−1,gl, SP)
7: Ri ← Ri−1 + δh(hi − hi−1).
8: end for
9: ĝl ← Quantize(gl, x)

10: end for
11: All-reduce: ĝ←

∑N
i=1 ĝ

12: return ĝ

References
[1] Guangfeng Yan, Tan Li, Shao-Lun Huang, Tian Lan, and

Linqi Song. AC-SGD: Adaptively compressed SGD for
communication-efficient distributed learning. IEEE Jour-
nal on Selected Areas in Communications, 40(9):2678–2693,
2022. 1

