
Appendix
The Appendix is organized as follows:

• Appendix A provides detailed setup and hyperparameters for experiments.
• Appendix B provides additional experiment results.
• Appendix C provides the generalization analysis of PERADA and the full proofs for Theorem 1 and Theorem 2.
• Appendix D provides the convergence analysis of PERADA and the full proofs for Theorem 3 and Theorem 4.

A. Experimental Details
A.1. Datasets and Model

Table 5. Summary of datasets.

Dataset Task # Training Samples # Test Samples # Validation Samples # Clients Data Partition # Classes

CIFAR-10 image classification 45000 10000 5000 20 label-shift non-IID (synthetic) 10
Office-Home image classification 12541 1656 1391 4 covariate-shift non-IID (nature) 65

CheXpert multi-label image classification 180973 20099 22342 20 label-shift non-IID (synthetic) 5

FL datasets We summarize our FL datasets in Tab. 5.
• CIFAR-10 [28] contains nature images for 10 classes, such as cat, bird, dog. We simulate label non-IID on CIFAR-10 using

Dirichlet distribution Dir(↵) [23] with ↵ = 0.1, creating different local data size and label distributions for M = 20 clients.
• Office-Home [61] contains images from four domains, i.e., Art, Clipart, Product, and Real Word. All domains share the

same 65 typical classes in office and home. We simulate the feature non-IID by distributing the data from 4 domains to 4
clients, respectively [58].

• CheXpert [24] is a dataset of chest X-rays that contains 224k chest radiographs of 65,240 patients, and each radiograph
is labeled for the presence of 14 diseases as positive, negative, and uncertain. We map all uncertainty labels to positive
(U-Ones [24]). We follow the original CheXpert paper to report the AUC score as a utility metric on five selected diseases,
i.e., Cardiomegaly, Edema, Consolidation, Atelectasis, Pleural Effusion. To create the label-shift non-IID on CheXpert,
we view each possible multi-class combination as a “meta-category” and group all combinations that have less than 2000
training samples into a new meta-category, which results in a total of 19 meta-categories. Then we use Dirichlet distribution
Dir(↵) with ↵ = 0.3 to create label-shift non-IID based on the 19 meta-categories for M = 20 clients. Such FL data
partition simulates a scenario where different hospitals (clients) have different majority diseases among their patients. Note
that such meta-categories are only used to create FL non-IID data partition, and our utility metric AUC score is always
calculated based on the five diseases, i.e., a 5-label image classification task.

The number of samples for each dataset is shown in Tab. 5, where we use a ratio of 9:1 to split the original training data into
training data and validation data for each dataset.

Distillation datasets We summarize our out-of-domain distillation dataset as below:
• CIFAR-10: we use 50k (unlabeled) samples from the CIFAR-100 training dataset.
• Office-Home and CheXpert: we use 50k (unlabeled) samples from the CIFAR-10 training dataset.

In Figure 4, we conduct the ablation study of distillation on CIFAR-10.
• Distillation steps: we fix the distillation data fraction as 1 and increase steps.
• Distillation data fraction: we fix the distillation steps as 100 and increase the data fraction.
• Distillation datasets: we fix the distillation steps as 100, data fraction as 1, and use different distillation datasets. Specifically,

we use 100.5k samples from the STL-10 unlabeled+training dataset, 50k samples from the CIFAR-100 training dataset, and
5k samples from the CIFAR-10 validation dataset.

Evaluation datasets As mentioned in Sec. 7.1, we evaluate pFL accuracy mainly under two metrics: Local-test (i.e., clients’
corresponding local test data) and Global-test (i.e., the union of clients’ local test data), to study the personalized performance
and generalization (against label or covariate shifts), respectively. In addition, for CIFAR-10, we evaluate pFL generalization
against distribution shifts on CIFAR-10.1 [51] and CIFAR-10-C [19]. CIFAR-10.1 contains roughly 2,000 new test images
that share the same categories as CIFAR-10, and the samples in CIFAR-10.1 are a subset of the TinyImages dataset [60].



CIFAR-10-C [19] is natural corruption benchmark for test-time distribution shits, containing common image corruptions such
as Blur, Gaussian Noise, and Pixelate. It is generated by adding 15 common corruptions plus 4 extra corruptions to the test
images in the CIFAR-10 dataset.

Model We use a ResNet-18 [18] pretrained on ImageNet-1K [53] for all tasks. We additionally evaluate Office-Home on
ResNet-34 [18] pretrained on ImageNet-1K. The pretrained models are downloaded from PyTorch [47].

Tab. 6 and Tab. 7 show the detailed model architectures of ResNet-18 and ResNet-34 model used for personalization on
Office-Home, respectively. We use the number of parameters in the corresponding layers and the number of parameters in
the full model to calculate the total number of # trainable parameters for different full model pFL and partial model pFL in
Figure 1.

Since we use ResNet-18 for all datasets, the number of parameters of different kinds of layers for CIFAR-10 and CheXpert
are the same, except for the output layer. This is because different datasets have different numbers of classes, which decide the
size of the output layer. In Tab. 1, we report the parameters of the ResNet-18 model on CIFAR-10, where the output layer
consists of 0.0051M parameters.

Table 6. Summary of model architectures of ResNet-18 model used for personalization on Office-Home.

Type Detailed layers # Params. in the layers

Full model full model 11.21 M
Input layer 1st Conv. layer 4.73 M

Feature extractor the model except last fully connected layer 11.16 M
Batch norm batch normalization layers 0.0078M
Output layer last fully connected layer 0.033 M

Adapter residual adapter modules 1.44 M

Table 7. Summary of model architectures of ResNet-34 model used for personalization on Office-Home.

Type Detailed layers # Params. in the layers

Full model full model 21.32 M
Input layer 1st Conv. layer 9.78 M

Feature extractor the model except last fully connected layer 11.16 M
Batch norm batch normalization layers 0.015 M
Output layer last fully connected layer 0.033 M

Adapter residual adapter modules 2.57 M

A.2. Training Details
We tuned the hyperparameters according to the personalized performance evaluated on the local validation data. We use SGD
as the client optimizer. For each baseline method as well as our method, we tuned the (client) learning rate via grid search
on the values {5e-4,1e-3, 5e-3, 1e-2} for CIFAR-10 and CheXpert, and {5e-4, 1e-3, 5e-3, 1e-2, 5e-2} for Office-Home. For
PERADA, we use Adam as the server optimizer. We tuned the server learning rate via grid search on the values {1e-5,1e-4,
1e-3, 1e-2} for all datasets. The strength of regularization � is selected from {0.1, 1} following [33] and we use the same �
for PERADA, DITTO, PFEDME. For PFEDME, we use the inner step of K = 3 as suggested in [59]. For APFL, the mixing
parameter ↵ is selected from {0.1, 0.3, 0.5, 0.7}. The final hyperparameters we used for PERADA are given in Tab. 8.

A.3. Experimental Setups for DP Experiments
Since the batch normalization layer in ResNet-18 requires computing the mean and variance of inputs in each mini-batch,
creating dependencies between training samples and violating the DP guarantees, it is not supported in differentially private
models. Thus, we turn to conduct DP experiments with a ViT-S/16-224 model [64], which is pretrained on ImageNet-21k [53].
We download the pretrained model from Hugging Face [63].

Following [42], we consider full client participation and perform local training with DP-SGD [1] for personalized models
and the global model. On CIFAR-10, the local epoch is 1, and we run all methods for 10 communication rounds. We tuned the
(client) learning rate via grid search on the values {0.01, 0.05,0.1, 0.2, 0.3 } for DITTO, PERADA W/O KD, and PERADA. The
optimal learning rate for DITTO, PERADA W/O KD, and PERADA are 0.05, 0.1, and 0.2, respectively. For PERADA, we set



Table 8. Hyperparameters of PERADA for each dataset.

Hyperparameter CIFAR-10 Office-Home CheXpert

Batch size 64 128 256
Clients per round 8 4 8

Local epochs 10 1 1
# training rounds 200 100 30

Regularization strength � 1 0.1 1
Client learning rate 0.01 0.05 0.01
Server learning rate 1e-3 1e-4 1e-5

Distillation step 500 100 50
Distillation batch size 2048 256 128

Figure 6. Averaged test accuracy of personalized models from participating clients at each communication round.

the distillation batch size as 32. We select the sever learning rate from {0.005, 0.003, 0.001}, and the optimal server learning
rate is 0.005.

We set the DP parameter � = 10
�5 and evaluate the averaged pFL accuracy under Local-test. We set the noise level �

as 0.8, 1, 1.5 for DP-SGD training to obtain the privacy budgets ✏ = 5.99 ± 3.03, 3.7 ± 2.12, 1.81 ± 1.12 used in Tab. 4,
respectively. Under each privacy budget, we tuned the clipping threshold via grid search from {1, 2, . . . , 10 } for each method.

B. Additional Experimental Results and Analysis
In this section, we provide additional experimental results and analysis, including (1) Convergence analysis; (2) analysis of
pFL performance under different model architectures Office-Home; (3) pFL performance under different data heterogeneity
degrees on CheXpert; (4) generalization comparison of the global model of different pFL methods; (5) effect of the pretrained
model; (6) effect of regularization strength �.

Convergence We present the learning performance from the convergence perspective in Figure 6, where we report the
averaged test accuracy of personalized models from the participated clients at each communication round. It shows that PER-
ADA achieves the best convergence speed and converges to a higher personalized performance (local-test) and generalization
performance (global-test).

Performance under different model architectures (ResNet-18 and ResNet-34) on Office-Home. Figure 1 shows the
performance of different pFL under ResNet-18 and ResNet-34. Cross different network architecture, PERADA is able to
achieve the best personalized performance and generalization with the fewest number of trainable parameters. For larger
model, the number of updated parameters difference between full model personalization and our adapter personalization will
be larger, reflecting our efficiency.

Performance under different data heterogeneity degrees on CheXpert. Tab. 3 shows under different data heterogeneity
degrees Dir(1) and Dir(0.3) on CheXpert, PERADA achieves the best personalized performance and generalization. It also
verifies that adapter-based personalization methods, including FEDALT, FEDSIM, PERADA are especially effective on the
X-ray data CheXpert.

Generalization comparison of the global model of different pFL methods. Tab. 2 compare the generalization performance
of the global model in our method to the global model in other full model pFL methods (PFEDME, APFL, DITTO) and generic
FL methods (FEDAVG, FEDPROX [32], FEDDYN [2], FEDDF [39]) on CIFAR-10. MTL and partial model pFL methods are



Figure 7. Effect of � on PERADA on CIFAR-10 and Office-Home.

excluded from the compression because they do not train a complete global model. We use the same distillation dataset and
distillation steps and data size for FEDDF and PERADA to ensure a fair comparison.

The results show that the global model of PERADA outperforms these baselines, which verifies that KD improves our
global model, and the improved performance of personalized models is due to a well-generalized global model.

Effect of pretrained models. Starting personalization from a pretrained model, such as FEDAVG model [44, 48], is common
in pFL, so we report the results with FEDAVG pretrained model (on FL data from scratch) for all methods3 on CIFAR-10.
The results in Figure 5 show that PERADA also achieves comparable personalized performance and higher generalization
than baselines with FEDAVG pretrained model. Moreover, Theorem 1 shows that high-quality local models (enabled by good
pretrained model) can further improve generalization. Here, we use ImageNet as an example of high-quality pretrained models,
which leads to even higher personalized performance and generalization for PERADA. Additionally, pretrained models lead to
significantly higher pFL accuracy than random initialization for all existing methods; therefore, leveraging a pretrained model,
which is often available for modern deep neural networks [5], is practical and beneficial not only for PERADA but also for
existing pFL methods.

Effect of �. Results on CIFAR-10 and Office-Home in Figure 7 shows that moderately increasing regularization strength
� can improve generalization, but it also degrades the personalized performance, which matches the observation for `2
regularization-based pFL methods in [48].

3FEDSIM is omitted here because its results are similar to FEDALT [48]



C. Generalization Analysis
We give the discussions and analysis for our generalization bounds. The outline of this section is as follows:
• Appendix C.1 provides more discussions on Theorem 1.
• Appendix C.2 provides the peliminaries for generalization bounds and introduces several useful lemmas.
• Appendix C.3 provides the proofs for generalization bounds of global model in Theorem 1.
• Appendix C.4 provides the proofs for generalization bounds of personalized model in Theorem 2.

C.1. Additional Discussion
Additional Discussion on Theorem 1. From Theorem 1, we can have the additional observations: (i) Client heterogeneity.
Larger heterogeneity, i.e., higher distribution divergence d̂H�H(Dm,D) between local and global datasets, could undermine the
generalization of g, echoing the implications in [39, 68] (ii) Number of classes. The smaller number of classes k is favorable
to generalization, as the classification task with fewer classes is easier to learn. We note that previous FL generalization
bounds [39, 44, 68] are limited to binary classification cases.

C.2. Peliminaries for Generalization Bounds
Here we introduce several existing definitions and lemmas from learning theory.

Lemma 1 (Empirical Rademacher complexity [55]). G be a set of functions Z ! [a, b], 8� > 0. Let Z1, . . . , Zn be i.i.d.
random variables on Z following some distribution P . The empirical Rademacher complexity of G with respect to the sample
(Z1, . . . , Zn) is
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Definition 1 (Risk [4]). We define a domain as a pair consisting of a distribution µS on inputs X and a labeling function
h
⇤

S : X ! �
k. The probability according to the distribution µS that a hypothesis h disagrees with a labeling function h

⇤

S
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Definition 2 (H -divergence [4]). Given a domain X with µ and µ
0 probability distributions over X , let H be a hypothesis class

on X and denote by I(h) the set for which h 2 H is the characteristic function; that is, where (x, y) 2 I(h) , h(x)y = 1.
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Lemma 2 (Domain adaptation [4]). Let H be a hypothesis space on X with VC dimension d. Considering the distributions
µS and µT . If D0

S and D0

T are samples of size n from µS and µT respectively and d̂H�H(D0

S ,D0

T , n) is the empirical H
-divergence between samples, then for every h 2 H and any � 2 (0, 1), with probability at least 1 � � (over the choice of
samples) , there exists,

"µT (h)  "µS (h) +
1

2
d̂H�H(D0

S ,D0

T ) + 4

r
2d log(2n) + log(2/�)

n
+ �

where � = "µT (h
⇤
) + "µS (h

⇤
) and h

⇤
:= argminh2H "µT (h) + "µS (h) corresponds to ideal joint hypothesis that minimizes

the combined error.



C.2.1 Useful Lemmas

Then, we introduce several useful lemmas.

Lemma 3. [22] For any v 2 Rk and y 2 [k],
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�
.
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Combining the two cases together, we prove the lemma.

Lemma 4. For any functions H with H 3 h : X ! Rk, since H takes values in Rk, let H|j denote the Rademacher
complexity of each class j,

Radn ({(x, y) 7! 1� h(x)y : h 2 H}) = O
✓p

kmax
j

Radn(H|j)
◆

where maxk Radn(H|k) is the worst-case per class Rademacher complexity.

Proof. The proof follows from a multivariate Lipschitz composition lemma for Rademacher complexity due to [13, Theorem
1]; it remains to prove that v 7!  (v)y is 1-Lipschitz with respect to the `1 norm for any v 2 Rk and y 2 [k].
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and therefore kr (v)yk1 = 1 and thus, by the mean value theorem, for any u 2 Rk and v 2 Rk, there exists z 2 [u, v] such
that

| (v)y �  (u)y| = | hr (z)y, v � ui  kv � uk1kr (v)yk1  kv � uk1.

In particular, v 7!  (v)y is 1-Lipschitz with respect to the `1 norm. Applying the aforementioned Lipschitz composition rule
[13, Theorem 1],

Radn ({(x, y) 7! 1� h(x)y : h 2 H}) = Radn ({(x, y) 7!  (h(x))y : h 2 H}) = O
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Lemma 5. For any functions Hm with Hm 3 hm : X ! Rk with any m 2 [M ], and h 2 H where h(x) := 1
M
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C.3. Proofs for Generalization Bounds of Global Model Theorem 1

Overview Recall the definition of distillation distance:

�µ,n(h1, . . . , hM ; g) :=
1
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kg(xi)�
1

M

MX

m=1

hm(xi)k1 (6)

which measures the output difference between the global model and the ensemble of local models. The server distillation (Line
21 in Algorithm 1) essentially finds the global model g with a small distillation distance �µaux,naux

, meaning that its outputs are
close to the ensemble outputs of local models f1, . . . , fM on the out-of-domain distillation dataset Daux.

For the generalization bounds of the global model, we aim to show g can have good generalization bounds on µ with KD if
it (1) distills knowledge accurately from teachers {fm} and (2) the teachers {fm} performs well on their local distributions
{µm}. To sketch the idea, by Lemma 3, we can upper bound error probabilities of g with the expected distillation distances
and errors of local models (i.e., teachers) on µ:
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Then, we can relate the errors of local models hm on µ to µm with prior arts from domain adaptation [4].
To simply our notations, we define “virtual hypothesis” h 2 H : X ! [0, 1]

k , whose outputs are the ensemble outputs
from all local models:

h(x) :=
1

M

MX

m=1

hm(x).

Main Analysis Let us recall Theorem 1.

Theorem 1 (Generalization bound of PERADA global model). Consider empirical datasets D ⇠ µ,Daux ⇠ µaux,Dm ⇠ µm

with |D| = |Dm| = n, |Daux| = naux. Let dm be the VC dimension of Hm, Radnaux
be the empirical Rademacher

complexity measured on naux samples. With probability at least 1 � �, for every hm 2 Hm, 8m 2 [M ] and

g 2 G, we have Pr
(x,y)⇠µ


argmax

y0
g(x)y0 6= y

�
 2E

(x,y)⇠µ
[1 � g(x)y]  O(k

3/2
[maxj(

1
M

PM
m=1 Radnaux

(Hm|j)) +

maxj Radnaux
(G|j)]) +

6
M

MP
m=1

(
4
3

q
2dm log(2n)+log(6M/�)

n +

q
log(6M/�)

2n +

q
log(6/�)
2naux

+ O(Radn(Hm))) +

1
M

MP
m=1

(2ERR(Dm, hm)| {z }
local empirical risk

+ d̂H�H(Dm,D)| {z }
client heterogeneity

+�m) + 2�µaux,naux
(h1, . . . , hM ; g)

| {z }
ensemble distillation distance

+4TV(µ, µaux)| {z }
TV divergence

, where ERR(Dm, hm) =

1
n

Pn
j=1

⇥
1� hm(xm,j)ym,j

⇤
,�m = "µm(h

⇤
) + "µ(h

⇤
), h

⇤
:= argminh2H "µm(h) + "µ(h).

To prove the generalization bounds of the global model Theorem 1, we use Lemma 6 as a bridge.

Lemma 6. Let classes of bounded functions H and G be given with h 2 H : X ! [0, 1]
k and g 2 G : X ! [0, 1]

k. Suppose
{xi}naux

i=1 is sampled from a distribution µaux. For every h 2 H and every g 2 G, with probability at least 1� �,
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Proof. To start, for any h 2 H, g 2 G, write

Ex,yg(x)y = Ex,y(g(x)� h(x))y + Ex,yh(x)y

For the first term, since h : X ! [0, 1]
k and g : X ! [0, 1]

k, by Holder’s inequality
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Here we need 1 in min {1, (g(x)� h(x))y} to make the upper bound tighter, since (g(x)� h(x))y  1 always hold.
Note that for any two measures µ and ⌫, and for any continuous function f(x) in [0, 1],
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Once again invoking standard Rademacher complexity arguments Lemma 1, with probability at least 1� �, every mapping
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For the final Rademacher complexity estimate, first note r 7! min{1, r} is 1-Lipschitz and can be peeled off, and we use
the definition of the empirical Rademacher complexity (Lemma 1), thus
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Since h and g have range [0, 1]k, then (h� g)y0 has range [�1, 1] for every y
0, and since r 7! |r| is 1-Lipschitz over [�1, 1],

combining this with the Lipschitz composition rule for Rademacher complexity and also the fact that a Rademacher random



vector ✏ 2 {±1}n is distributionally equivalent to its coordinate-wise negation �✏, then, for every y
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Inspired by [22], we introduce Lemma 3 to tackle the error probability Pr(x,y)⇠µ
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�
.

Let us define  (v) = 1� v. According to Lemma 3, we can derive the upper bound for Prx,y

argmax

y0
g(x)y0 6= y

�
in

Theorem 1 as below

Ex,y (g(x))y = Ex,y (1� g(x)y)

� 1

2
Ex,y


1


argmax

y0
g(x)y0 6= y

��

=
1

2
Prx,y


argmax

y0
g(x)y0 6= y

�
(9)

Then we will study the upper bound for Ex,y (g(x))y in Lemma 7.

Lemma 7. Let classes of bounded functions H and G be given with h 2 H : X ! [0, 1]
k and g 2 G : X ! [0, 1]

k. Let
classes of bounded functions Hm be given with hm 2 Hm : X ! [0, 1]

k, 8m 2 [M ]. For every hm 2 Hm, 8m 2 [M ], and
for every g 2 G, with probability at least 1� �,

E(x,y)⇠µ[1� g(x)y)] E(x,y)⇠µ[1� h(x)y] + �µaux,naux
(h1, . . . , hM ; g) + 2TV (µ, µaux) + 3

s
log(2/�)

2naux

+O
 
k
3/2

"
max

j

 
1

M

MX

m=1

Radnaux
(Hm|j)

!
+max

j
Radnaux

(G|j)
#!

Proof. We define two function classes

QH := {(x, y) 7!  (h(x)y) : h 2 H} and QG := {(x, y) 7!  (g(x)y) : g 2 G} ,

and use the fact that:

1

naux

nauxX

i=1

k (g (xi))�  (h (xi))k1 =
1

naux

nauxX

i=1

k1� g (xi)� 1 + h (xi)k1 = �µaux,naux
(h1, . . . , hM ; g).

We use QH and QG in Lemma 6, and use Lemma 4 and Lemma 5 to estimate Radn (QH) and Radn (QG), with probability
1� �, yielding



E(x,y)⇠µ[ (g(x))y)]

 E(x,y)⇠µ[ (h(x))y)] +
1

naux

nauxX

i=1

min {1, k (g(xi))�  (h(xi))k1}+ 2TV(µaux,µ) + 3

s
log(2/�)

2naux

+ 2

kX

y0=1

(Radnaux
({x 7!  (h(x))y0 : h 2 H}) + Radnaux

({x 7!  (g(x))y0 : g 2 G}))

 E(x,y)⇠µ[1� h(x)y)] + �µaux,naux
(h1, . . . , hM ; g) + 2TV(µaux, µ) + 3

s
log(2/�)

2naux

+O
✓
k
3/2


max

j
Radnaux

(H|j) + max
j

Radnaux
(G|j)

�◆
(Due to Equation (6) and Lemma 4)

= E(x,y)⇠µ[1� h(x)y] + �µaux,naux
(h1, . . . , hM ; g) + 2TV(µaux, µ) + 3

s
log(2/�)

2naux

+O
 
k
3/2

"
max

j

 
1

M

MX

m=1

Radnaux
(Hm|j)

!
+max

j
Radnaux

(G|j)
#!

(Due to Lemma 5)

To show our generalization bounds in Theorem 1, it remains to bound E(x,y)⇠µ[1� h(x)y] in Lemma 7.

Lemma 8. Let classes of bounded functions Hm be given with hm 2 Hm : X ! [0, 1]
k, 8m 2 [M ], and dm be the VC

dimension of Hm. Then with probability at least 1� � over the draw of D0
= {(xi, yi)}ni=1 from distribution µ, and D0

m from
distribution µm with size n , for every hm 2 Hm, 8m 2 [M ],

E(x,y)⇠µ [1� h(x)y] 
1

M

MX

m=1

✓
E(x,y)⇠µm

h
1� hm(x)y

i
+

1

2
d̂H�H(D0

m,D0
)

+�m + 4

r
2dm log(2n) + log(2M/�)

n

!

where �m = "µm(h
⇤
) + "µ(h

⇤
) and h

⇤
:= argminh2H "µm(h) + "µ(h).

Proof. Since the predictions from different local models hm are independent, we can expand h(x) as below:

E(x,y)⇠µ [1� h(x)y] = E(x,y)⇠µ

"
1�

 
1

M

MX

m=1

hm(x)y

!#
=

1

M

MX

m=1

E(x,y)⇠µ

h
1� hm(x)y

i

We apply Lemma 2 for the target distribution µ and each local distribution µm. Concretely, with probability 1� �/M ,



E(x,y)⇠µ [1� hm(x)y]

=E(x,y)⇠µ|hm(x)y � h
⇤

µ(x)y| (use the fact of labeling function that h⇤

µ(x)y = 1, (x, y) ⇠ µ)

="µ(hm) (use the labeling function as in Definition 1)

"µm(hm) +
1

2
d̂H�H(D0

m,D0
) + 4

r
2dm log(2n) + log(2M/�)

n
+ �m

=E(x,y)⇠µm
|hm(x)y � h

⇤

µm
(x)y|+

1

2
d̂H�H(D0

m,D0
) + 4

r
2dm log(2n) + log(2M/�)

n
+ �m

=E(x,y)⇠µm
[1� hm(x)y] +

1

2
d̂H�H(D0

m,D0
) + 4

r
2dm log(2n) + log(2M/�)

n
+ �m

(use the fact of labeling functions that h⇤

µm
(x)y = 1, (x, y) ⇠ µm)

where �m = "µm(h
⇤
) + "µ(h

⇤
) and h

⇤
:= argminh2H "µm(h) + "µ(h).

Combing all m 2 [M ] together, with with probability 1� �, we have

E(x,y)⇠µ [1� h(x)y]

=
1

M

MX

m=1

E(x,y)⇠µ

h
1� hm(x)y

i

 1

M

MX

m=1

 
E(x,y)⇠µm

h
1� hm(x)y

i
+

1

2
d̂H�H(D0

m,D0
) + �m + 4

r
2dm log(2n) + log(2M/�)

n

!

Lemma 9. With probability at least 1� �, we have w.r.t the draw of Dm ⇠ µm with |Dm| = n that

E(x,y)⇠µm

h
1� hm(x)y

i
 ERR(Dm, hm) + 2Radn(Hm) + 3

r
log(2/�)

2n
(10)

where ERR(Dm, hm) =
1
n

Pn
j=1

⇥
1� hm(xm,j)ym,j

⇤
.

Proof. The proofs directly follow Lemma 1 with b = 1, a = 0.

Given Lemma 7 and Lemma 8 with at least 1 � �/3 probability for each event, and Lemma 9 with at least 1 � �/3M

probability for each local model m 2 [M ], we can bound Ex,y (g(x))y in Equation (9), which proves the main result in
Theorem 1.

C.4. Proof for Generalization Bounds of Personalized Models in Theorem 2
Overview For the generalization bounds of the personalized models, we will upper bound error probabilities of pm with the
expected prediction distances between the global model and personalized model on µ as well as errors of the global model on
µ.

Main Analysis The proofs for Theorem 2 are similar to Lemma 6 and Lemma 7. We first introduce Lemma 10 as below.

Lemma 10. Let classes of bounded functions Pm and G be given with pm 2 Pm : X ! [0, 1]
k and g 2 G : X ! [0, 1]

k.
Suppose {xi}ni=1 is sampled from a distribution µ. For every pm 2 Pm and every g 2 G, with probability at least 1� �,

E(x,y)⇠µpm(x)y  E(x,y)⇠µg(x)y +
1

n

nX

i=1

min {1, kpm(xi)� g(xi)k1}+ 3

r
log(2/�)

2n

+ 2

kX

y0=1

(Radn ({x 7! pm(x)y0 : pm 2 Pm}) + Radn ({x 7! g(x)y0 : g 2 G}))



Proof. To start, for any pm 2 Pm, g 2 G, write

Ex,ypm(x)y = Ex,y(pm(x)� g(x))y + Ex,yg(x)y

For the first term, since pm : X ! [0, 1]
k and g : X ! [0, 1]

k, by Holder’s inequality

Ex,y(pm(x)� g(x))y =

Z
min {1, (pm(x)� g(x))y} dµ(x, y) 

Z
min {1, kpm(x)� g(x)k1} dµX (x)

Once again invoking standard Rademacher complexity arguments Lemma 1, with probability at least 1� �, every mapping
x 7! min {1, kpm(x)� g(x)k1} where pm 2 Pm and g 2 G satisfies

Z
min {1, kpm(xi)� g(xi)k1} dµX (x)


Z

min{1, kpm(xi)� g(xi)k1}dµ(x)

 1

n

nX

i=1

min {1, kpm(xi)� g(xi)k1}+ 3

r
log(2/�)

2n

+ 2Radn ({x 7! min {1, kpm(xi)� g(xi)k1} : pm 2 Pm, g 2 G})

For the final Rademacher complexity estimate, we follow the proofs in our previous Lemma 6 and have

Radn ({x 7! min {1, kpm(x)� g(x)k1} : pm 2 Pm, g 2 G})


kX

y0=1

Radn ({x 7! |pm(x)� g(x)|y0 : pm 2 Pm, g 2 G}) .

Also following the proof steps in our Lemma 6, we have for every y
0 2 [k]

Radn ({x 7! |pm(x)� g(x)|y0 : pm 2 Pm, g 2 G})
 Radn ({x 7! pm(x)y0 : pm 2 Pm}) + Radn ({x 7! g(x)y0 : g 2 G})

Combining the above results together, we complete the proof.

Let us recall Theorem 2.

Theorem 2 (Generalization bound of PERADA personalized model). With probability at least 1 � �, for every

pm 2 Pm, 8m 2 [M ], and for every g 2 G, we have Pr(x,y)⇠µ


argmax

y0
pm(x)y0 6= y

�
 2E(x,y)⇠µ(1� g(x)y) +

2
1
n

Pn
i=1 min {1, kpm(x)� g(x)k1}+ 6

q
log(2/�)

2n +O
�
k
3/2

[maxj Radn(P|j) + maxj Radn(G|j)]
�
.

Then we prove Theorem 2 as below:

Proof for Theorem 2. Following the proofs in our previous Lemma 7, we define two function classes

QPm := {(x, y) 7!  (pm(x)y) : pm 2 Pm} and QG := {(x, y) 7!  (g(x)y) : g 2 G} ,

and use the fact that:

1

n

nX

i=1

k (pm (xi))�  (g (xi))k1 =
1

n

nX

i=1

k1� pm (xi)� 1 + g (xi)k1 =
1

n

nX

i=1

kpm (xi)� g (xi)k1

We use QPm and QG in Lemma 10, and use Lemma 4 and Lemma 5 to estimate Radn (QPm) and Radn (QG), with
probability 1� �, yielding



E(x,y)⇠µ[1� pm(x)y)] = E(x,y)⇠µ[ (pm(x))y)]

 E(x,y)⇠µ[ (g(x))y)] +
1

n

nX

i=1

min {1, k (pm(xi))�  (g(xi))k1}+ 3

r
log(2/�)

2n

+ 2

kX

y0=1

(Radn ({x 7!  (pm(x))y0 : pm 2 Pm}) + Radn ({x 7!  (g(x))y0 : g 2 G}))

 E(x,y)⇠µ[1� g(x)y] +
1

n

nX

i=1

min {1, kpm(xi)� g(xi)k1}+ 3

r
log(2/�)

2n

+O
✓
k
3/2


max

j
Radn(Pm|j) + max

j
Radn(G|j)

�◆
(Due to Lemma 4)

Finally, we use Lemma 3 to show that

Ex,y (1� pm(x)y) �
1

2
Ex,y


1


argmax

y0
pm(x)y0 6= y

��
=

1

2
Prx,y


argmax

y0
pm(x)y0 6= y

�

Combining all results together, with probability at least 1� �, we have,

Prx,y


argmax

y0
pm(x)y0 6= y

�
 2E(x,y)⇠µ[1� g(x)y] + 2

1

n

nX

i=1

min {1, kpm(xi)� g(xi)k1}+ 6

r
log(2/�)

2n

+O
✓
k
3/2


max

j
Radn(Pm|j) + max

j
Radn(G|j)

�◆

This completes the proof.



D. Convergence Analysis
In this section, we present the discussions and analysis for our convergence guarantees. The outline of this section is as
follows:
• Appendix D.1 provides more discussions and additional convergence results.
• Appendix D.2 provides the proofs for the global model convergence guarantee in Theorem 3.
• Appendix D.3 provides the proofs for the personalized model convergence guarantee in Theorem 4.

D.1. Additional Discussions and Theoretical Results
Discussions on distillation gradient For simplicity, we denote f(✓, x) =

1
M

PM
m=1 f(✓m, x). The closed-form expression

of rwR can be expressed as:

krwR ({✓1, . . . , ✓M} , w)k

=

�����Ex⇠µaux

kX

i=1

rw

"
�(f(✓, x))i ln

 
�(f(✓, x))i

�(f(w, x))i

!#����� (KL divergence loss)

=

�����Ex⇠µaux

kX

i=1

� �(f(✓, x))i

�(f(w, x))i
rw�(f(w, x))i

�����

=

�����Ex⇠µaux

kX

i=1

�(f(✓, x))i

�(f(w, x))i
rw�(f(w, x))i

����� (11)

where k is the number of classes and i denotes the i-th class. Here we note that when the averaged logits from local models
are qual to the logits of global model, i.e., �(f(✓, x))i = �(f(w, x))i

krwR ({✓1, . . . , ✓M} , w)k =

�����Ex⇠µaux

kX

i=1

rw�(f(w, x))i

����� = 0 (12)

because
Pk

i=1 �(f(w, x))i = 1 (which leads to rw
Pk

i=1 �(f(w, x))i = 0 ) . Therefore, the norm of distillation gradient
can be small when the averaged logits from local models are close to the logits of global model.

Discussions for Assumptions. Assumption 1 on Lipschitz smooth and Assumption 2 on the bounded variance for gradients
due to stochastic sampling noise are standard for smooth and non-convex optimization. Assumption 3 quantifies the diversity
of FL clients’ data distribution, which is widely used in FL optimization [12, 27, 35, 46, 52]. We follow [12, 46, 52] to assume
bounded gradient for non-convex FL optimization in Assumption 4.

Convergence of PERADA personalized models.

Theorem 4 (Convergence of PERADA personalized model). When ⌘p =
1

(L+�)
p
T

, ⌘l =
1

EL
p
T

, ⌘g =
1

LRRT , then the
algorithm satisfies:

1

TS

T�1X

t=0

S�1X

s=0

EkrvPm(v
t,s
m , w

t
)k2  O

⇣
(L+ �)�Pm + �2p

TS
+
GP (L+ �)(L�L +  1)

1/2

T 1/4L
p
ES

+
GP (L+ �)

p
 2

T 3/4LRES
+
GP (L+ �)�

LES

⌘

where �Pm = Pm(v
0
m, w

0
m)�Pm(v

t
m, w

t
), �1 = 64(3�̄+

2�2

E ), �2 = S�
2
+

p
�1GP (L+�)

LE +
p
 2GP (L+�)+

GP �̄(L+�)

L
p
E

.
 1, 2 are defined the same as in Theorem 3.

Remark 4. (1) Local steps: a larger local step S can reduce number of rounds T for convergence. (2) Connection to global
model: The terms associated with �̄, 1, 2 are related to the convergence rate of the global model, which is indicated in
Theorem 3. For example, a large E can also reduce the number of communication rounds T for the personalized model to
convergence. We obtain a convergence rate of O(1/T

1/4
) for personalized models. It is worth noting that previous studies

have shown that in strongly convex settings, personalized models converge at the same rate as the global model [33]. However,



in strongly convex settings, the minimizers are ensured to be unique, which can simplify the establishment of connections
between global and personalized models by considering their distances to the corresponding minimizers. Here, we present the
results in the more general non-convex setting and additionally analyze the effect of the global model’s ensemble distillation
on personalized models.

D.2. Proofs for the Global Model Convergence Guarantee in Theorem 3

Additional notations Recall the parameter-averaged model is ✓̄t+1
=

1
M

PM
m=1 ✓

t+1
m , which is used to initialize the server

global model at round t before the KD training. Let

⌘̄g = ⌘gR, ⌘̄l = ⌘lE (13)

Based on the update rules, we define gt and g
t
m as below, which capture the update of global model during server training, and

the update of local model during client training, respectively.

w
t+1

= ✓̄
t+1 � ⌘̄gg

t
, ✓

t+1
m = w

t � ⌘̄lg
t
m (14)

That is:

g
t
:= � 1

⌘gR
(w

t+1 � ✓̄
t+1

) =
1

R

R�1X

r=0

erwR({✓t+1
m }, wt,r

),

g
t
m := � 1

⌘lE
(✓

t+1
m � w

t
) =

1

E

E�1X

e=0

erLm(✓
t,e
m ) (15)

According to server update rule w
t+1 � w

t
= ✓̄

t+1 � w
t � ⌘̄gg

t. Note that ✓̄t+1 � w
t
=

1
M

PM
m=1 ✓

t+1
m � w

t
=

� 1
M

PM
m=1 ⌘̄lg

t
m based on Equation (15). Then we define,

�
t
w :=

1

M

MX

m=1

g
t
m +

⌘̄g

⌘̄l
g
t
, which indicates wt+1 � w

t
= �⌘̄l�tw (16)

According to client update rule ✓t+1
m �✓tm = (w

t� ⌘̄lgtm)�(w
t�1� ⌘̄lgt�1

m ). Note that wt�w
t�1

= �⌘̄l 1
M

PM
m=1 g

t
m� ⌘̄ggt

based on Equation (15). Then we define,

�
t
✓m :=

⌘̄g

⌘̄l
g
t�1

+
1

M

MX

i=1

g
t�1
i � g

t�1
m + g

t
m, which indicates ✓t+1

m � ✓
t
m = �⌘̄l�t✓m (17)

In our analysis, we define one virtual sequence w̄
t,e, motivated by [35],

w̄
t,e

=
1

M

MX

m=1

✓
t,e
m (18)

In particular, w̄t+1,0
= w

t and w̄
t+1,E�1

= ✓̄
t+1.

Proof Outline Recall the generic FL objective, which is to minimize the average loss measured on all clients’ data:

L(w) := 1

M

MX

m=1

Lm (w) (19)

The goal is to bound the gradients of the global model w.r.t the L(w), which is used to show that the trained models can
converge to the stationary points:

T�1X

t=0

E�1X

e=0

1

ET
EkrL(w̄t,e

)k2 (20)



Challenges The challenges of convergence analysis include: (1) Bi-level optimization between server distillation for wt and
client training for {✓tm}, which incorporates two objectives (i.e., minimizing distillation loss and local loss respectively), as
shown in Equation (15). (2) Mutual initializations. At each round, the global model is initialized by averaged local models
before distillation, and local models are initialized by the global model before local training. Such mutual initializations
intervene in the model updating trajectories of wt and {✓tm} w.r.t their training objective. In particular, the server optimization
of w will be influenced by the drift of client optimization of ✓m, as shown in Equation (16) (i.e., additional deviation with
the term 1

M

PM
m=1 g

t
m). Moreover, client optimization is also influenced by the drift of server optimization, as shown in

Equation (17) (i.e., additional deviation with the terms ⌘̄g
⌘̄l
g
t�1

+
1
M

PM
i=1 g

t�1
i � g

t�1
m ).

To overcome the aforementioned challenges, we regard {✓tm} as the intermediate models to update w
t+1, and quantify the

effects of local client updates and server distillation updates on reducing L(wt+1
).

Supporting lemmas Before we start, we introduce a useful existing result by Jensen’s inequality in Lemma 11:

Lemma 11 (Jensen’s inequality). For any vector xi 2 Rd
, i = 1, . . . ,M , by Jensen’s inequality, we have

�����

MX

i=1

xi

�����

2

 M

MX

i=1

kxik2 (21)

We also introduce the following supporting lemmas:

Lemma 12 (Bounded local client drift error). If ⌘̄l  1
2L , ⌘l  1

2LE , we have

E
���erLm(✓

t,e
m )�rLm(w

t
)

���
2
�
 2�

2
+ 16L

2
⌘̄
2
l

✓
3E
h��rLm(w

t
)
��2
i
+

2�
2

E

◆
. (22)

Moreover, the averaged drift error over E local steps and M clients is:

1

ME

M,EX

m,e

E
���erLm(✓

t,e
m )�rLm(w

t
)

���
2
�
 2�

2
+ 16L

2
⌘̄
2
l

✓
3�̄ + 3E

h��rL(wt
)
��2
i
+

2�
2

E

◆
. (23)

Proof.

E
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m )�rLm(w

t
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���
2
�
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���erLm(✓
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m )�rLm(✓
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 2E
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��2
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(Assumption 2)
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��2
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(Assumption 1)



If ⌘̄l  1
2L , ⌘l  1

2LE , we have
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Lemma 15 (From [34]).
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Proof. We leverage the results from Equation (33) of [34] with AT = 0 and BT = 1
4, which are implied by Theorem 2 in

[34].
4AT and BT are defined in [34].



Completing the proof of Theorem 3 Recall our main theorem
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Rearrage the inequality and take 1
T

PT�1
t=0 on both side. We get

1

ET

T�1X

t=0

E�1X

e=0

krL(w̄t,e
)k2  2

⌘lET

�
L(w0

)� L(wT�1
)
�
+
⌘lL�

2

M
+ 16⌘

2
l E

2
L
2
�̄
2
.+

⌘̄g(G
2
+  2) + ⌘̄

2
gL 2

E⌘l
(38)

Let ⌘l = 1
LE

p
T

and ⌘g =
1

LRRT . Then,

1

ET

T�1X

t=0

E�1X

e=0

krL(w̄t,e
)k2  2Lp

T

�
L(w0

)� L(wT�1
)
�
+

�
2

EM
p
T

+ 16
�̄
2

T
+

L(G
2
+  2) + L

2
 2/LRT

ELR

p
T

(39)

D.3. Proofs for Personalized Model Convergence Guarantee in Theorem 4

Additional notations Let
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Based on the update rules, we define �tvm as below, which capture the update of personalized model during client training.
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Proof Outline The goal is to bound the gradients of personalized models w.r.t the (Personal Obj), which is used to show that
the trained models can converge to the stationary points:
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Supporting lemmas We first introduce some supporting lemmas:
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Completing the proof of Theorem 4 Recall Theorem 4:
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Expand the last term according to Lemma 17.
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