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Supplementary Material

1. MPM Algorithm
In MPM, a continuum body is discretized into a set of La-
grangian particles p, and time is discretized into a sequence
of time steps t = 0, t1, t2, .... Here we take a fixed stepsize
∆t, so tn = n∆t.

At each time step, masses and momentums on particles
are first transferred to grid nodes. Grid velocities are then
updated using forward Euler’s method and transferred back
to particles for subsequent advection. Let mp, x

n
p , vn

p , F n
p ,

τn
p , and Cn

p denote the mass, position, velocity, deforma-
tion gradient, Kirchhoff stress, and affine momentum on
particle p at time tn. Here, particle masses are invariant
due to mass conservation law. Let mn

i , xn
i and vn

i denote
the mass, position, and velocity on grid node i at time tn.
We summarize the explicit MPM algorithm as follows:
1. Transfer Particles to Grid. Transfer mass and momen-

tum from particles to grids as
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We adopt the APIC scheme [1] for momentum transfer.
2. Grid Update. Update grid velocities based on forces at

the next timestep by
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3. Transfer Grid to Particles. Transfer velocities back to
particles and update particle states.
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p )FE,n,

FE,n+1
p = Z(F E, tr

p ),

τn+1
p = τ (FE,n+1

p ).
(3)

Here b is the B-spline degree, and ∆x is the Eulerian
grid spacing. The computation of the return map Z and
the Kirchhoff stress τ is outlined in Sec. 2. We refer

Table 1. Model Settings.

Scene Figure Constitutive Model
Vasedeck Fig. 1 Fixed corotated
Ficus Fig. 2 Fixed corotated
Fox Fig. 3 Fixed corotated
Plane Fig. 3 von Mises
Toast Fig. 3 Fixed corotated
Ruins Fig. 3 Drucker-Prager
Jam Fig. 3 Herschel-Bulkley
Sofa Suite Fig. 3 Fixed corotated
Materials Fig. 6 Fixed corotated
Microphone Fig. 7 Neo-Hookean
Bread Fig. 1 in Supp. Fixed corotated
Cake Fig. 1 in Supp. Herschel-Bulkley
Can Fig. 1 in Supp. von Mises
Wolf Fig. 1 in Supp. Drucker-Prager

Table 2. Material Parameters.

Notation Meaning Relation to E, ν
E Young’s modulus /
ν Poisson’s ratio /
µ Shear modulus µ = E

2(1+ν)

λ Lamé modulus λ = Eν
(1+ν)(1−2ν)

κ Bulk modulus κ = E
3(1−2ν)

the readers to [2] for the detailed derivations from the
continuous conservation law to its MPM discretization.

2. Elasticity and Plasticity Models
We adopt the constitutive models used in [7]. We list the
models used for each scene in Tab. 1 and summarize all the
parameters needed in discussing the constitutive models in
Tab. 2.

In all plasticity models used in our work, the deformation
gradient is multiplicatively decomposed into F = FEF P

following some yield stress condition. A hyperelastic con-
stitutive model is applied to FE to compute the Kirch-
hoff stress τ . For a pure elastic continuum, we simply take
FE = F .

2.1. Fixed Corotated Elasticity

The Kirchhoff stress τ is defined as

τ = 2µ(FE −R)FET
+ λ(J − 1)J, (4)

where R = UV T and FE = UΣV T is the singular value
decomposition of elastic deformation gradient. J is the de-
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Figure 1. Additional Evaluation. Examples from top to bottom are: vasedeck (elastic entity), bread (fracture), cake (viscoplastic material),
can (plastic metal) and wolf (granular material).

terminant of FE [1].

2.2. StVK Elasticity

The Kirchhoff stress τ is defined as

τ = U (2µϵ+ λ sum(ϵ)1)V T , (5)

where ϵ = log(Σ) and FE = UΣV T [3].

2.3. Neo-Hookean Elasticity

The Kirchhoff stress τ is defined as

τ = µ(FEFET − I) + log(J)I, (6)

where J is the determinant of FE [1].

2.4. Drucker-Prager Plasticity

The return mapping of Drucker-Prager plasticity for sand
[3] is, given F = UΣV T and ϵ = log(Σ),

FE = UZ(Σ)V T , (7)

Z(Σ) =


1, sum(ϵ) > 0,
Σ, δγ ≤ 0, and sum(ϵ) ≤ 0,

exp
(
ϵ− δγ ϵ̂

∥ϵ̂∥

)
, otherwise.

(8)

Here δγ = ∥ϵ̂∥ + α (dλ+2µ) sum(ϵ)
2µ , α =

√
2
3

2 sinϕf

3−sinϕf
, and

ϕf is the friction angle. ϵ̂ = dev(ϵ).



2.5. Von-Mises Plasticity

Similar to Drucker-Prager plasticity, given F = UΣV T

and ϵ = log(Σ),

FE = UZ(Σ)V T ,

where

Z(Σ) =

{
Σ, δγ ≤ 0,

exp
(
ϵ− δγ ϵ̂

∥ϵ∥

)
, otherwise, (9)

and δγ = ∥ϵ̂∥F − τY
2µ . Here τY is the yield stress.

2.6. Herschel-Bulkley Plasticity

We follow Yue et al. [6] and take the simple case where
h = 1. Denote strial = dev(τ trial), and strial = ||strial||. The

yield condition is Φ(s) = s−
√

2
3σY ≤ 0. If it is violated,

we modify strial by

s = strial −

(
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√
2

3
σY

)
/

(
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)
.

s can then be recovered as s = s · strial

||strial|| . Define bE =

FEFET
. The Kirchhoff stress τ is computed as

τ =
κ

2

(
J2 − 1

)
I + µdev

[
det(bE)−

1
3 bE

]
.

3. Additional Evaluations
We present additional evaluations of our method in Fig. 1.
The vasedeck data is from the Nerf dataset [4] and the others
are synthetic data, generated using BlenderNeRF [5].
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