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Abstract

In the supplemental material, we provide additional details
about the following:
• Details on implementation. (Section A),
• Evaluation metrics of 3D scene graph alignment and

downstream tasks (Secion B),
• Evaluation on scene graph alignment with controlled semantic

noise and with predicted 3D scene graph (Section C),
• Additional ablation study on registration strategy and network

variants (Section D),
• Visualisation on point cloud registration and point cloud

mosaicking (Section E).

A. Implementation Details
Data Generation for Alignment in Dynamics: To evaluate scene
graph alignment in the changing environment Section 4.3, we
generate the samples using the sub-scenes in the validation split
and the original 3D scene maps from [41, 46]. The dynamics
between scan and rescan of the same indoor scene consist of three
types: ”non-rigid”, ”removed” and ”rigid”. We ignore small rigid
object changes, whose Euler angles α + β + γ < 3◦, and mark
them as aligned node ground truth. Thus, the sample numbers of
scenarios (i), (ii) and (iii) are 819, 354, and 1,635.
Network and Training: We take the fine-level geometric feature
of the KPConv-FPN as the input of our P2SG Fusion module.
Same as suggested in [44], the input node embeddings of the
AFA-U module are set to zero vectors for one graph and one-hot
vectors for the other graph. Unlike in [44], we train the AFA-U
module together with the other parts of the network in one stage.
We employ the matching rescoring on the super-point matching
stage of [31] because the fine-level points within a super-point
are considered most likely to belong to the same object. The
training procedure takes 10 epochs with the ADAM optimizer and
an initial learning rate of 1e−4, which decreases by 0.1 every 4
epochs. If not specified, we mask out the unmatched objects of the
scene fragments and conduct registration on the overlap region as
a whole instead of registration traverse through all matched pairs.

B. Evaluation Metrics
We give the definition of evaluation metrics used in the main paper
here. For the same evaluation metric used in multiple tasks, its
definition will be adjusted based on input.

B.1. Scene Graph Alignment

Hits@K describes the fraction of true entities that appear in the
first k entities of the sorted rank list R of the alignment prediction

S̃. Denoting the set of individual ranks as ri, it is given as:

Hk(r1, ..., rn) =
1

n

n∑
i

[ri < k] ∈ [0, 1] (1)

where [·] is the Iversion bracket.
Mean Reciprocal Rank (MRR) is the arithmetic mean over

the reciprocals of ranks of true triples:

MRR(r1, ..., rn) =
1

n

n∑
i

1

ri
∈ (0, 1] (2)

F1-score is the harmonic mean of the precision and recall.
More specifically, the F1 score for graph matching is defined as:

tp, fp, fn = S̃S, S̃(1− S), (1− S̃)S

F1 =
2tp

2tp+ fp+ fn
∈ [0, 1] .

(3)

B.2. Overlap Checking
Overlap checking of two 3D scenes is a binary classification
problem that checks whether two 3D scenes overlap or not.
Metrics (Precision, Recall, and F1-score) are given as:

Prec. =
TP

TP + FP
∈ [0, 1] ,

Recall =
TP

TP + FN
∈ [0, 1] ,

F1 = 2
Prec.×Recall

Prec.+Recall
∈ [0, 1] ,

(4)

in which TP is true positive, FP is false positive and FN as false
negative.

B.3. Point Cloud Registration
Registration Recall (RR) is the fraction of successfully registered
point cloud pairs. A point cloud pair is successfully registered
when its transformation error is lower than threshold τ1 = 0.2m.
In addition, the transformation error is the root mean square error
of the ground truth correspondence C, to which the estimated
transformation T̃ has applied:

RMSE =

√√√√ 1

|C|
∑

(px,qy)∈C

∥∥T̃(px)− qy

∥∥2

2
,

RR =
1

M

M∑
i=1

[RMSE < τ1] ∈ [0, 1] ,

(5)

where px and qy denote the x-th point in source P and y-th point
in reference Q, respectively; [·] is the inerson bracket; and M is
the number of all point cloud pairs.

Feature Matching Recall (FMR) is the fraction of point cloud
pairs whose Inlier Ration (IR) is above τ3 = 0.05. FMR measures



the potential success during the registration, while Inlier Ratio
is the fraction of inlier correspondences among all hypothesized
correspondences C̃:

IR =
1∣∣∣C̃∣∣∣

∑
(px,qy)∈C̃

[∥∥T(px)− qy

∥∥
2
< τ2

]
∈ [0, 1] ,

FMR =
1

M

M∑
i=1

[IR > τ3] ∈ [0, 1] ,

(6)

in which an inlier is defined as the distance between the two
points is lower than a certain threshold τ2 under the ground-truth
transformation T.

Relative Rotation Error (RRE) measures the geodesic
distance in degrees between the estimated R̃ and ground truth
rotation R matrices:

RRE = arccos(
trace(RT R̃)− 1)

2
). (7)

Relative Translation Error (RTE) measures the Euclidean
distance between the estimated t̃ and ground truth translation t
vectors:

RTE =
∥∥t − t̃

∥∥ . (8)

Modified Chamfer Distance measures the average of the
pair-wise nearest distance between two point sets P and Q:

CD =
1

|P |
∑
p∈P

min
q∈Q

∥∥T̃(p)− q
∥∥2

2
+

1

|Q|
∑
q∈Q

min
p∈P

∥∥q − T̃(p)
∥∥2

2

(9)

B.4. Point Cloud Mosaicking
Having the ground truth point cloud P and reconstructed
point cloud P ∗. The Reconstruction Accuracy (Acc) and
Reconstruction Completeness (Comp) are defined as:

Acc =
1

n

n∑
p∈P

min
p∗∈P∗

(∥p− p∗∥)

Comp =
1

n

n∑
p∗∈P∗

min
p∈P

(∥p− p∗∥)
(10)

And the Reconstruction Precision (Prec.) and recall (Recall)
and the F1-score are defined as:

Prec. =
1

n

n∑
p∈P

min
p∗∈P∗

[∥p− p∗∥ < 0.05] ∈ [0, 1] ,

Recall =
1

n

n∑
p∗∈P∗

min
p∈P

[∥p− p∗∥ < 0.05] ∈ [0, 1] ,

F1 = 2
Prec.×Recall

Prec.+Recall
∈ [0, 1] .

(11)

C. Evaluation on Scene Graph Alignment
with Controlled Semantic Noise and with
Predicted 3D Scene Graph

We also test the robustness of our network against controlled
noise on scene graph node alignment. Following the same

implementation of SGAligner [34], we evaluate our method with
5 different types of noises: (i) only relationships are removed; (ii)
only object(node) are removed their corresponding attributes and
any relationships that include them are also removed; (iii) both
relationships and object nodes are removed; (iv) object instances
assigned with the wrong semantic label); and (v) both relationships
and objects are both assigned with wrong semantics. Results are
given in Table 8. We also list the noise-free result here as a
reference.

Noise
Types

Mean
RR F1 Hits @

K=1 K=3 K=5
(i) 96.70 77.52 94.93 98.56 98.80
(ii) 97.81 78.41 96.02 99.69 99.94
(iii) 96.86 77.15 94.43 99.35 99.89
(iv) 85.18 69.71 77.99 90.69 94.75
(v) 85.14 69.05 77.81 90.57 95.02

noise-free 97.91 88.39 96.24 99.66 99.93
Table 8. Evaluation on node matching with different variants
of controlled semantic noise.

Our method shows very strong robustness against missing
relationships (edges) and missing instances (nodes). In (iv)
and (v), wrong instance semantic information shows relatively
strong impacts on the alignment performance compared to wrong
relationships. For testing the use of predicted 3D scene graphs
instead of ground truth graphs, we generated predicted 3D scene
graphs using [41] and tested our network (only trained on the
ground truth) on the alignment task. Since the authors of [34] did
not publish their code or pre-trained model for using predicted 3D
scene graph, we cannot guarantee a fair comparison with their
results. Table 9 reproduces theirs as in [34] compared with ours
on our validation set.

Methods Mean
RR F1 Hits @

K=1 K=3 K=5
SGA [34] 88.2 - 83.3 91.8 95.1
B+P+K 95.9 86.0 93.1 98.6 99.4

Table 9. Evaluation on node matching with predicted graph.

D. Additional Ablation Study
D.1. Object-per-Object Registration with Ours
Same as SGAligner [34], we conduct object-per-object point
cloud registration following with RANSAC using the scene graph
alignment results of our own network. To further improve the
robustness of the object-to-object registration, we propose two
methods: (1) The dense scene graph alignment result S is first
filtered with a confidence threshold s, only when the score of
object pairs is higher than s will be considered in point cloud
registration. If none of the object pairs has a score higher than s,
all object pairs are taken for registration, and (2) only top-k-scored
object pairs will be used in registration. We also give the
registration results of using our network with overlap-to-overlap
(O2O) and using SGAligner (S⋆.) with O2O as references in
Table 10. Our network combined with OPO registration performs
marginally worse than with O2O registration, while for SGAligner
the situation is the converse.



Methods CD RRE RTE FMR RR
s = 0 0.0544 4.9849 12.31 99.37 96.00
s = 0.3 0.0581 4.8246 12.74 99.37 95.74
s = 0.5 0.0462 3.9634 9.74 99.26 96.39
k = 3 0.0627 5.1250 13.61 99.37 95.95
k = 5 0.0514 4.7141 11.76 99.37 96.27
k = 7 0.0574 5.0628 12.97 99.37 95.90
O2O 0.0083 0.6252 1.32 99.73 99.57
S⋆. + O2O 0.0179 1.3428 2.67 99.26 98.95

Table 10. Object-per-Object Point Cloud Registration with
our method. Methods with s represent filter object pairs with
confidence scores lower than the threshold, while methods with k
take only the top-k object pairs for registration.

D.2. Fusion with Different Levels of Point Feature
KPConv-FPN [38] provides multi-level point geometric features
of a point cloud. In the original implementation of
Geotransformer, there are three levels of geometric features:
coarse-level Nc × 1024, middle-level Nm × 512 and fine-level
Nf × 256. Here we give a comparison of using different levels
of geometric features for the P2SG fusion module in terms of 3D
scene graph alignment in Table 11. As the result shows, P2SG
fusion with fine-level geometric features performs the best among
all listed variants.

Methods Mean
RR F1 Hits @

K=1 K=3 K=5
Coarse 97.00 85.51 94.69 99.33 99.79
Middle 97.85 87.67 96.24 99.58 99.83
Fine 98.58 89.39 97.49 99.68 99.90

Table 11. Evaluation on node matching with different levels of
point geometric feature.

D.3. Alignment with Augmented Transformation
Here we provide the 3D scene graph alignment results with
augmented T in Table 12 as the complementary of Figure 6.

Mtds.
Overlap
(%)

Mean
RR F1 Hits @

K=1 K=3 K=5

SG-PGM
(ours)

10-30 94.96 74.86 91.23 98.69 99.65
30-60 97.91 87.95 96.33 99.54 99.87

60- 99.15 95.21 98.48 99.83 99.93
overall 97.81 88.18 96.16 99.49 99.85

SGA*
[34]

10-30 79.93 60.46 64.64 86.54 93.50
30-60 83.20 71.84 71.25 89.61 95.28

60- 87.24 81.05 78.01 93.75 97.48
overall 85.92 79.46 77.69 88.07 93.71

Table 12. Evaluation of our proposed method on node
matching per overlap range. Even in low-overlap cases, our
method still provides accurate alignment results with Hit@1 over
90%.

D.4. Analyse of AIS Module
Equation 2 gives the definition of the affinity matrix, in which
the affinity of the embeddings from the scene graph and the

point cloud is separately computed. In Figure 8, we provide
a visualization of the learnable parameters Ws and Wp . As
shown in the Figure, the multi-level scene graph embedding is
more coupled crossing different feature channels, especially of
the first-hop graph embedding, while the geometric feature is
relatively more decoupled.

(a) Ws (b) Wp

Figure 8. The learnable parameters Ws and Wp of the AIS
Module.

D.5. Additional comparison with GCNet on point
cloud registration and overlap checking

We tested GCNet [56] on the registration task on our validation set
in Table 13. We additionally combined our method with GCNet
to mask out the feature points from unmatched objects before the
Consistent Voting, which shows improvement compared to GCNet
alone.

Methods RRE RTE FMR RR
GeoTr [31] 1.94 4.96 98.37 98.37
GeoTr + Ours 1.57 3.51 99.47 98.72
GCNet [56] 2.24 5.43 98.88 98.51
GCNet + Ours 1.96 4.91 99.09 98.72

Table 13. Additional evaluation on point cloud registration.

We also tested GCNet on the overlap checking task, using the
average of the top 25% of predicted overlap score vector o and
saliency score vector s. In Table 14, we report GCNet with o25% ·
s25% > 0.45 as overlap, and the results of using the scene-level
score k instead of Eq. 8 in our method. It shows a huge drop in
Prec. because our partial graph matching module is only trained
with overlapping samples.

Methods Prec. Recall F1
SGA [34] 92.03 90.94 91.48
GCNet [56] 93.43 92.24 92.83
SG-PGM w/ k > 0.45 89.94 96.87 93.28
SG-PGM@3 (ours) 95.41 95.01 95.21

Table 14. Overlap check for point cloud registration.

E. Qualitative Results
Here we provide some qualitative results by combining our
method and GeoTransformer [31] for point cloud registration in
Figure 9 and for point cloud mosaicking in Figure 10.
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Figure 9. Qualitative Results on Point Cloud Registration of our proposed method.
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Figure 10. Qualitative Results on Point Cloud Mosaicking of our proposed method. Object nodes are visualized as 3D spheres.
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