SynFog: A Photo-realistic Synthetic Fog Dataset based on End-to-end Imaging
Simulation for Advancing Real-World Defogging in Autonomous Driving

Supplementary Material

In this supplementary document, we provide additional
details on our foggy image simulation method and more
evaluations to complete the main paper.

A. Analysis of ASM
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The second term of Eq. (1) represents the airlight caused
by the scattering of environmental illumination (direct sun-
light, diffuse sky light and light reflected by the ground) by
particles in the atmosphere. Fig. 1 describes the derivation

of the airlight [11].
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Figure 1. Airlight derivation. The cone of atmosphere between an
observer and an object can be considered as a source of ambient
illumination, termed airlight [11].

Specifically, if we define an infinitesimal volume of fog
as dV = dwx?dz and let k account for the exact nature of
the illumination, the intensity of dV' can be defined as:

dI(z,)\) = dVEB(\) = dwa*dzkB(N). )

With the assumption that the linear dimensions of the object
are smaller in comparison to its distance from the sensor
[16], the infinitesimal volume can be treated as a point light
source, and the irradiance it produces can be expressed as:

dI(z, \)e PNz

dE(z,)\) = - . 3)

X

After obtaining radiance dL expressed in Eq. (4) from ir-
radiance dF, we can get the final airlight L in Eq. (5) by

integrating d L over the range of z = 0 to z = d.
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where k = Ly (0o, \) represents the radiance of the sky at
infinity. Based on the derivation of airlight, it is obvious
that the construction of ASM [11] does not account for the
effects of indirect illumination or active light sources on the
scattering medium as shown in Eq. (2).

B. Construction of SynFog dataset

For the rendering of foggy scenes, we select 16 different
high dynamic range sky maps for the development of Syn-
Fog as shown in Fig. 2. By incorporating these sky maps,
we are able to create foggy scenes that closely resemble
the real-world conditions under which fog typically occurs.
Additional examples from SynFog are shown in Fig. 9.

Figure 2. HDR sky maps used in our foggy scene rendering.
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Figure 3. Characteristics of the sensor CFA (color filter array) and
sensor IRFilter in our sensor simulation.



Table 1. Quantitative comparisons of SOTA defogging methods on SynFog dataset.

Method SynFog (Ours) RESIDE-indoor [8]

PSNR1 SSIM?T LPIPS[17]] NIQE[!0]] FADE[2]] | PSNRT SSIM 1
(TPAMI’10) DCP [6] 18.30 0.540 0.367 4.202 0.669 16.62 0.818
(TIP’15) CAP [18] 17.35 0.364 0.418 4.289 0.311 18.96 0.815
(ICCV’19) GridNet [9] 26.98 0.851 0.163 5.620 0.980 32.16 0.984
(CVPR’20) MSBDN [4] 22.99 0.542 0.380 6.856 0.412 33.67 0.985
(AAAT’20) FFA-Net [12] 25.14 0.836 0.258 4.147 1.179 36.39 0.989
(CVPR’21) AECR-Net [15] 26.11 0.855 0.164 3.973 0.996 37.17 0.990
(TIP’23) DehazeFormer [ 14] 27.96 0.923 0.232 4.454 1.428 36.82 0.992

Table 2. Quantitative test results on corresponding synthetic datasets.

Datasets Foggy Cityscapes [ 3]

Virtual KITTI [5] SynFog (Ours)

PSNR SSIM

PSNR SSIM PSNR  SSIM

AECR-Net [15] 339113 0.9873
DehazeFormer [14] | 34.6294 0.9893

29.4138 0.8761 | 26.1066 0.8551
31.8525 0.9015 | 27.9552 0.9228

Figure 4. Comparison of SynFog with other synthetic datasets in
the driving field. The second column displays the result after re-
gional contrast stretching of the rectangular region, revealing that
only SynFog exhibits consistent noise characteristics with those
found in real captured foggy images.

Fig. 3 illustrates the actual sensor characteristics used in
our sensor simulation, which includes the transmittance of
the Color Filter Array (CFA) and the transmittance of the
Infrared Filter. Fig. 4 shows the comparison of SynFog and
the other two synthetic fog datasets after the enhancement
of regional contrast stretching.

C. Fog Chamber Calibration

To ensure consistency between the virtual and real fog
chamber, we calibrate the spectra of the light sources and
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Figure 5. Calibration of the light sources and blackout cloth in the
fog chamber.
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Figure 6. Color analysis under clear condition. In the scatter plot,
the x-coordinates represent the RGB values from the real captured
color patch, while the y-coordinates represent the RGB values
from the simulated color patch. The colors red, green, and blue
correspond to the three channels of the images, respectively.

the reflection spectra of the blackout cloth in the real fog
chamber. The corresponding curves are depicted in Fig. 5.
The color analysis under clear condition of the 24 patches
on the color checker is shown in Fig. 6.



D. Additional Experimental Results

Tab. 1 presents the test results for 7 mainstream defog-
ging methods on both SynFog dataset and the RESIDE
dataset [8]. The lower metrics achieved on SynFog com-
pared to RESIDE indicate the challenges posed by SynFog
and the potential for further improvement in existing defog-
ging methods when applied to more realistic fog datasets.

Tab. 2 displays the test results of AECR-Net [15]
and DehazeFormer [14] on their respective test sets of the
training data. It can be seen that both models deliver
strong performance on the corresponding test sets of Foggy
Cityscapes [13] and Virtual KITTT [5], thus validating the
effectiveness of the training process. The test results on
real-world foggy images of these models are shown in Fig.
7. Only models trained on SynFog demonstrate superior
generalization performance.

Table 3. Ablation Study using DehazeFormer.

Datasets PSNR SSIM

Foggy Cityscapes (Full) | 34.6294  0.9893
Foggy Cityscapes (Part) | 33.3741 0.9861
Virtual KITTI (Full) 31.8525 0.9015
Virtual KITTT (Part) 31.4001 0.8971
SynFog—f 28.5248 0.9428
SynFog (Ours) 27.9552  0.9228

Tab. 3 presents the test results of DehazeFormer [14] on
the respective test sets of the training data when trained on
the following conditions:

* Full Foggy Cityscapes and Part Foggy Cityscapes,
* Full Virtual KITTI and Part Virtual KITTI,
¢ SynFog-/3 and SynFog.

In the first two sets of experiments, we randomly select a
training dataset of the same size as SynFog from the original
one and use it as the Part dataset. The results show that the
model trained on the Part dataset has poorer performance
than the one trained on the Full dataset, on the test sets of
both Foggy Cityscapes [13] and Virtual KITTI [5]. More-
over, the model trained on the Full dataset has worse gen-
eralization ability than that of SynFog, even when datasets
are with larger scale. This highlights the advantages of our
SynFog dataset compared with the other two datasets.
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Figure 7. Real-world test results of AECR-Net [15]. (a)-(c) are from Foggy Zurich dataset [3], while (d) is from Seeing Through Fog
dataset [1]. The defogged images are further processed by a pretrained YOLOVS5 [7] detection model. Only the model trained on SynFog
demonstrates superior generalization performance on real-world foggy images with fewer artifacts and improved detection accuracy.
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Figure 8. Real-world test results of DehazeFormer [14]. (a) is from Seeing Through Fog dataset [ 1], while (b) is from Foggy Zurich dataset
[3]. We also compare the generalization ability of the model trained on SynFog-3. The results are consistent with the findings in Fig. 7.
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Figure 9. Additional example images from SynFog dataset with
various fog density levels.
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