Template Free Reconstruction of Human-object Interaction with Procedural
Interaction Generation

Supplementary Material

In this supplementary, we first discuss in more detail
about our implementation for the ProciGen and HDM in
Appendix A. We also present the statistics of our generated
ProciGen dataset. We then show more results and experi-
mental analysis of our method in Appendix B. We conclude
with a discussion of limitations and future works.

A. Implementation Details

We describe in more details of the implementation of our
ProciGen and HDM. Our code for both data generation and
reconstruction will be made publicly available.

A.l. ProciGen Data Generation

Correspondence estimation. We use the implementation
from ART [115] for our autoencoder, which uses Point-
Net [66] as encoder and 3-layer MLPs as decoder. We sam-
ple 8000 points from the mesh surface and train the network
with bidirectional Chamfer distance. To ensure reconstruc-
tion quality, we overfit one network per category. Each
model is trained for 5000 epochs. We report an average
reconstruction error of around 7mm for our autoencoders,
which indicates highly accurate reconstructions.

Contact transfer and optimization. We use a threshold of
o = 2cm to find points that are in contact. The loss weights
for our contact based loss optimization are: A\. = 400, \,, =
6.25, Aeoli = 9, Ainit = 6.25 - 10%.

Rendering. We use blender to render our synthesized
human-object interactions. We choose one set of 4 camera
configurations from BEHAVE [7] and another set of 6 cam-
era configurations from InterCap [35]. For each synthesized
interaction, we additionally add small random global rota-
tion and translation to have variations of camera viewpoints.
We render the interactions with an empty background since
our network also takes images with background masked out
as input. We add lights at fixed locations with random light
intensities. Our blender scene and rendering code will also
be made publicly available.

A.2. HDM: Hierarachical Diffusion Model

We use the modified Point Voxel CNN from [117] as the
network for our joint diffusion pg, segmentation g4, and
separate diffusion models pl, pg. The input images are
cropped and resized to 224 x 224. The joint diffusion model
diffuses in total 16384 points while the separate models dif-
fuse 8196 points each. We use the MAE [30] as the image
feature encoder. We additionally stack the human and ob-
ject masks as well as distance transform as additional image

features, same as PC? [60]. We train our diffusion models
for a total of 500000 steps with batch size 20. We use a
linear scheduler without warm-up for the forward diffusion
process, in which beta increases from 1 - 107° to 8 - 1073.
For the network optimization, we use AdamW optimizer
with linear learning rate decay starting from 3 - 10~* and
decreasing to 0 during the course of training. The diffu-
sion models are trained with the standard diffusion training
scheme [32]. To train the segmentation model, we add small
Gaussian noise to the GT point clouds and project them to
obtain image features. The loss is then computed between
the prediction and recomputed GT labels on the points with
noise. To speed up training, we train stage 1 (g4, ps) and
stage 2 (pg, pg) models separately. For each stage, it takes
around 4 days to train on a machine with 4 A40 GPUs.

Camera estimation. Recall from Sec. 3.2.3 that a cam-
era translation is required to project the normalized point
clouds back to the image. This needs to be estimated from
input when GT camera pose is not available, especially for
generalization to diverse datasets. The camera translation
consists of three unknowns, which requires at least two
point pairs of 3D location and 2D-pixel coordinates. We
empirically choose the Gaussian point center and one edge
of the point cloud. The idea is to have the initial Gaussian
point clouds cover the 2D human object interaction region
and the 3D center is projected to 2D crop center.

Formally, let p. = (¢, ¢y) be the center coordinate of
the 2D interaction region, w be the width of the 2D inter-
action square crop, p. = (0,0, z) be a 3D point near the
edge of the Gaussian sphere with unknown depth z. Given
camera projection matrix K € R**3 and translation vector
t., we define the following equations:

Ktc = Pc; K(pe + tc) = piD (6)

The first equation projects origin to p. and the second
equation projects p. to the middle right of the 2D crop
p22 = (ci +w/2,¢,). This is a linear system of four equa-
tions with four unknowns (camera translation and depth 2),
leading to a unique solution for the translation t.. We em-
pirically set o to different values for different categories
based on the estimation error on the BEHAVE training set.
Furthermore, we compute p.. as the centroid of all 2D points
inside the human and object masks. From Fig. 6, Fig. 17,
Fig. 16, Fig. 18, Fig. 19 and , Fig. 20, it can be seen that our
method can reconstruct human and object well on different
datasets using our estimated translation.
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Figure 7. The number of objects per category we used to generate our ProciGen dataset. It can be seen that the shape variations are
dominated by tables and chairs, which are also the categories with the most complex shapes.
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Figure 8. Distribution of interactions per object category. Our dataset features interaction data with very diverse object shapes, which is

not possible via real data capture.

A.3. Dataset statistics

We generate our ProciGen dataset based on interactions
from BEHAVE [7] and InterCap [35], human scans from
MGN [4], object shapes from ShapeNet [12], Obja-
verse [19] and ABO [15]. When generating our data, we
mainly consider the variation of object shapes and interac-
tion poses while the object sizes remain the same. We also
try to avoid large imbalances among objects. Therefore,
chairs and tables are two dominant categories as they have
the most geometry and interaction pose variations (Fig. 7,
Fig. 8). Other categories have similar amounts of synthetic
data as they have similar amounts of interaction poses. The
difference comes from failures in joint optimization due to
irregular mesh.

In total we rendered 1.1M interaction images with 21555
different object shapes. The distribution for object shapes
and interactions per category are shown in Fig. 7 and Fig. 8.
Our dataset has very diverse object shapes, especially for
chairs and tables whose geometry also varies a lot in real-
ity. Our procedural generation method is a scalable solution
and it allows for generating large-scale interaction datasets
with great amount of variations which is not obtainable via
capturing real data.



CHORE 1 PC2 1 Ours 1
Method Hum. Obj. Comb.| Comb. | Hum. Obj. Comb.
Chair 0373 0491 0443 | 0407 | 0384 0521 0.463
Ball 0330 0388 0374 | 0424 | 0395 0517 0471
Backpack 0399 0509 0.469 | 0436 | 0397 0457 0.444
Table 0304 0455 0389 | 0470 | 0379 0.642 0517
Basket 0301 0266 0292 | 0381 | 0412 0297 0364
Box 0352 0347 0362 | 0409 | 0.414 0.401 0.424
Keyboard 0335 0412 0383 | 0450 | 0.353 0.606 0.493
Monitor 0358 0412 0395 | 0377 | 0368 0348 0370
Suitcase 0400 0477 0443 | 0404 | 0431 0484 0.462
Stool 0351 0479 0424 | 0443 | 0394 0543 0.479
Toolbox 0281 0330 0306 | 0398 | 0373 0.400 0.403
Trashbin 0376 0402 0398 | 0387 | 0407 0414 0.422
BEHAVEall | 0.345 0426 0397 | 0423 | 0392 0.498 0.457
Chair 0.389 0468 0433 | 0470 | 0.384 0.604 0.500
Cup 0412 0538 0510 | 0566 | 0487 0.601 0.578
Skateboard | 0.520 0.684 0.612 | 0578 | 0491 0.739 0.624
Bottle 0426 0501 0495 | 0592 | 0.549 0582 0.593
TnterCapall | 0406 0513 0469 | 0.506 | 0.440 0.607 0.534

Table 6. Per-category F-score @(0.01m comparison. Note that PC2
cannot separate human-object hence we only report the combined
error, and that CHORE requires template meshes. Our method
outperforms baselines for almost all categories.
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Figure 9. Reconstruction performance vs. amount of data. It can
be seen that more data leads to better results.

B. Additional Experiments and Results

B.1. Per-category reconstruction accuracy

We report the accuracy of each category in Tab. 6. Our
method consistently outperforms baselines in almost all cat-
egories. While the improvements in numbers look small,
the visual difference is quite significant, as shown in the pa-
per Fig. 4, Fig. 6.

B.2. Performance vs. amount of data

We show in Table 3 that our data contributes a lot to improve
the reconstruction accuracy. To further understand the data
contribution, we train our model for the same epochs with
different amounts of synthetic data and test on BEHAVE
images without fine-tuning. The performance vs. data plot
is shown in Fig. 9. More data consistently leads to better
performance both quantitatively and qualitatively.

B.3. Analysis of T for our HDM

In our second stage, we first add noise to the clean predic-
tions from stage one until step ¢ = T}y, and then run the re-
verse diffusion process from ¢t = T to t = 0. We evaluate
the performance of our method under different values of 7
in Figure 10. There is a trade-off for the number of forward
steps Tp: with a larger T}, less interaction information and
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Figure 10. The performance of our method using different inter-
mediate step 7y for the input to our second stage diffusion. Meth-
ods are evaluated using F-score@0.01m. At 7y = 500, we obtain
a good balance between human and object performance.

noisy details are preserved and the network predicts sharper
detail but less faithful to initial prediction and interaction
constraints. It can be seen that 7, = 500 is a good balance
between shape fidelity and interaction coherence.

B.4. Shape fidelity

Our method predicts dense and clean point clouds which are
ready for accurate surface extraction. We show in Fig. 11
that high-quality meshes can be extracted from our pre-
dicted point clouds. More specifically, we use screened
Poisson surface reconstruction for the human points using
normals estimated by MeshLab. For the object, we first use
Delaunay triangulation to obtain triangle mesh. We then
run fusion-based waterproofing [77] to obtain a watertight
mesh. We also apply Delaunay triangulation and water-
proofing to PC? [60] predictions and results are shown in
Fig. 11. It can be seen that PC? predictions have miss-
ing structure and noisy point clouds, leading to low-quality
meshes. In contract, we can extract high-quality meshes
directly from our point cloud reconstructions, without any
post processing.

B.5. Interaction semantics

Our method predicts the segmentation of human and ob-
ject, allowing separate manipulation which is important
for downstream applications. To demonstrate this, we use
Text2txt [13] to generate textures for the meshes extracted
from PC? and our predicted point clouds. Other methods
such as Paint-it [106] are also applicable here. We show
the reconstruction and generated textures in Fig. 13. It can
be seen that PC? predictions are noisy and it does not rea-
son human and object separately. This leads to low-quality
mesh and generating coherent texture for a combined mesh
of human and object is difficult. On the contrary, our
method separate human and object while also predicting
high quality individual shapes. This allows generating high
quality texture and changing textures for human and object
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Figure 11. Comparing the shape fidelity of our method with PC? on the BEHAVE [7] dataset. PC? does not separate human and object and
its prediction is noisy, leading to inaccurate meshes. Our method predicts clean point clouds with human object segmentations, allowing
us to extract high-quality mesh surfaces.
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Figure 12. Out of distribution generalization. Our method can
reconstruct some categories that are unseen in training data.

differently.

B.6. More generalization results

We show more generalization comparison on the Inter-
Cap [35] dataset in Fig. 15. Note that all objects from Inter-
Cap are unseen during training time. It can be seen that PC?
trained on BEHAVE [7] only cannot generalize to objects
from InterCap. Training PC? with our ProciGen dataset al-
lows better generalization ability but its shape prediction is
still noisy. Furthermore, PC? cannot segment human and
object, which is important to reason the interaction seman-
tics and manipulate them separately. Our method general-
izes well to InterCap and reconstructs high quality shapes
with interaction semantics.

Our method trained only on our synthetic ProciGen
dataset generalizes well to other datasets. We show re-
sults on NTU-RGBD [52], SYSU [33] and challenging in
the wild COCO [49] images in figure Fig. 16, Fig. 17 and
Fig. 18, Fig. 19, Fig. 20 respectively. Note that our method
is trained only on our synthetic ProciGen dataset and not
fine-tuned on any images from these datasets. It can be seen
that our method generalizes to different datasets with di-
verse object shapes, without requiring any template meshes.

For quantitative evaluation, we focus on 15 ob-
ject categories that are seen from our synthetic data
(Tab. 6). We test our method on three additional cate-
gories from BEHAVE and InterCap that are unseen and
have GT data. The F-scores (human/object/combined) are:
0.465/0.453/0.479 (tennis racket), 0.333/0.332/0.361 (yoga
mat), 0.375/0.305/0.360 (umbrella), 0.353/0.443/0.420 (all
seen categories). We also show example reconstructions in
Fig. 12. Our method can reconstruct unseen categories.

C. Limitations and Future Work

We present a scalable solution to synthesize large amount
of interaction dataset which allows training methods with
strong generalization ability. We also propose a model
for obtaining high quality human, object shapes and also
interaction semantics, without any template shapes. We
demonstrate the generalization ability of our method on di-
verse datasets. Our template-free reconstruction method is a
promising first step towards real in-the-wild reconstruction.

Nevertheless, there are still some limitations to the cur-
rent approach. First, our ProciGen data generation method
always starts with a seed interaction pose sampled from
an existing interaction dataset. This limits the diversity in

terms of interaction poses. Future works can explore gener-
ative models such as Object-Popup [64] to further diversify
the interaction pose. It is also highly desirable to combine
the large human pose variations from AMASS [58], which
can further improve the robustness of reconstruction meth-
ods to challenging poses.

Secondly, our method struggles to predict accurate hu-
man shapes when large chunk of the human body is oc-
cluded, see Fig. 14. This is because our method is purely
template-free and only use the network to learn the human
and object shape priors. Future works can try to further
explore human shape or pose constraints to regularize net-
work training and predictions. In addition, our hierarchi-
cal diffusion model are designed for human object inter-
action, which is applicable for general bilateral interaction
cases like human-human, hand-hand, and hand-object inter-
actions. However, it cannot handle multi-person or multi-
object interactions. We leave these for future works.
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Figure 13. Comparing textures generated for meshes extracted from PC? [60] and our predicted point clouds. Textures are obtained using
Text2txt [13]. PC? predicts human and object as one joint point cloud with noisy points, which leads to inaccurate mesh surfaces and it is
difficult to generate textures for this combined mesh. It also does not allow changing human and object textures separately. Our method
predicts high quality point clouds with segmentation. This enables us to extract high-fidelity mesh, which is important for generating
high-quality texture and manipulating human and object differently.
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Figure 14. Example failure cases of our method. Our method can fail when large parts of human body are invisible, leading to incoherent
human shape reconstructions. Future works can explore human body shape priors to regularize the network predictions.
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Figure 15. Comparing generalization performance on InterCap [35]. All objects are unseen during training time. PC? trained only on
BEHAVE [7] has limited generalization ability. Training PC? with our ProciGen improves generalization but it still cannot reason human

and object separately and the predicted points are noisy. Our method trained only on our ProciGen generalizes well to InterCap objects
even they are completely unseen.
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Figure 16. Generalization results on NTU-RGBD [52] dataset. Our method can reconstruct different objects faithfully under various
camera viewpoints and lighting conditions, without relying on any template shapes.
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Figure 17. Generalization results on SYSU action [33] dataset. Our method can reconstruct different real-life human and objects during
challenging interactions and occlusions.
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Figure 18. Generalization results to COCO [49] dataset. Our method can reconstruct high-quality human and object from in the wild
images which has very diverse shape variations, without using any template shapes.
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Figure 19. Generalization results to COCO [49] dataset. Our method reconstructs diverse object shapes in the wild.
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Figure 20. Generalization results to COCO [49] dataset. Our method can reconstruct challenging human and object pose as well as shapes
without using any template shapes.
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