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1. More experiments

1.1. Experiments on underwater image datasets

On benchmark dataset UIEB. UIEB is the benchmark
dataset of underwater image enhancement [1]. We select
all the data from the UIEB dataset for testing. As shown in
Tab. 1, our method achieves better enhancement effects on
the UIEB dataset even without training on the UIEB dataset.
The performance of UVE-Net is superior to the baseline
method Water-Net [1] trained on the UIEB dataset. The
results of other methods are based on the official data pub-
lished by UIEB [1].
On challenging dataset CDUIE. CDUIE [12] is a new
publicly available challenging dataset for underwater im-
age enhancement in 2023. The images in the dataset are
taken in the Great Lake Superior, USA. These challenging
images do not have reference images. We qualitatively com-
pare our method with other recently published methods in
the CDUIE [12] dataset. As shown in Fig. 1, our method
achieves better color restoration effects on these challeng-
ing datasets while the enhancement results of other meth-
ods have artifacts or obvious color deviation. Our method
trained on the UVEB dataset can achieve better enhance-
ment effects on these challenging data due to the various
types of color deviations in the videos of the UVEB dataset
(especially green and yellow color deviations).

1.2. Experiments on network performance

Model speed. We evaluate our UVE-Net-s on different
devices in Tab. 2. Our model can achieve 6.17 FPS on
a computational-constrained embedded development board
for 2K videos.
Model performance on video quality metric. Video Qual-
ity Metric In Tab. 3, we evaluated the enhancement results
of different methods using the DCT-based Video Quality
Metric (VQM), and our method still performed well on the
VQM metric.
Impact on downstream tasks. Fig. 2 shows that UVE-
Net trained on UVEB can increase the number of matching
feature points in 3D reconstruction / SLAM tasks.
Comparison with video enhancement method. we re-
produce and train the video deblurring method DST-Net of
CVPR2023 on the UVEB dataset with two different settings
for comparison in Tab. 4. Our method achieves better results
than DST-Net.

1.3. Ablation experiments about UVE-Net.

Ablation about the impact of drastic scene changes on
model performance. Our method remains effective even
when the scene undergoes drastic changes.To verify this, we
design an experiment to simulate possible “large changes”
by ×2 to ×8 downsampling video frame sequences (not
frames). Let V1 denote a raw video with obvious scene
changes. Its ×2 to ×8 downsampling results are repre-
sented as V2, V4, and V8. As shown in Tab. 5, the perfor-
mance is substantially unchanged even if we use V8 to sim-
ulate an ultra-large scene change for inference. The results
indicate that our method can adapt to large environmen-
tal changes under the same type of water degradation. We
also evaluated V1 without utilizing adjacent frames, which
would be a special case (t = 0 for inference), and obtained
a PSNR of 23.7134 (almost the same as t = 1 case).
Ablation about the utilization of UVE-Net on water-
degradation characteristics. Based on the similarity of
water degradation types in adjacent frames in real-world
scenarios, UVE-Net allows adjacent frames and middle
frame to follow similar feature enhancement processes. We
validated this network design through experiments in Tab. 6.
We choose 3 underwater videos with 2 degradation types
(e.g., A (blue), B (green), and C (green)) and shuffle their
frames in 2 ways. In Tab. 6, the middle frame can still pro-
vide practical guidance to adjacent frames in different en-
vironments and similar types of water degradation (BCB).
The results indicate that UVE-Net can effectively utilize the
types of water degradation to guide the adjacent frames.
Ablation on the number of convolutional kernels used
for guidance. We further explore the impact of using differ-
ent numbers of convolutional kernels to guide the enhance-
ment process of VE-Net. In our proposed setting, the in-
put patch size is 512 × 512, and the number of channels
for R and R/6 modules is 24. The number of channels for
the R/2 module is 96. The number of convolutional kernels
used to convey guidance information is 384. Following the
setting, the 32 × 32 pixels information is converted into a
3 × 3 convolutional kernel with an information conversion
ratio of approximately 100. During the guidance process,
the number of network channels for VE-Net changed from
24 to 384 and then to 96. When we use 96 convolutional
kernels for guidance, the 64× 64 pixels information is con-
verted to a 3 × 3 convolutional kernel with an information
conversion ratio of approximately 400. During the guid-
ance process, the number of network channels for VE-Net
changed from 24 to 96. When we use 1536 convolutional



Table 1. Quantitative comparisons of enhanced video quality on UIEB [1] dataset.

Methods fusion-based [2] retinex-based [3] GDCP [4] histogram prior [5] blurriness-based [6] Water CycleGAN [7] Dense GAN [8] Water-Net [1] Ours

PSNR(dB)↑ 17.6077 17.0168 12.0929 15.8215 15.3180 15.7508 17.2843 19.1130 19.3813
MSE(×103)↓ 1.1280 1.2924 4.0160 1.7019 1.9111 1.7298 1.2152 0.7976 0.4059

Raw MLLE [9] USUIR [10] WWPF [11] Ours

Figure 1. Qualitative comparison of enhanced video quality on the CDUIE [12] dataset.

kernels, the information conversion ratio is approximately
25. During the guidance process, the number of network
channels for VE-Net changed from 24 to 1536 and then to
96. As shown in Tab. 7, When the number of convolution
kernels is 384, UVE-Net achieves the best enhancement re-
sults. Although the number of convolution kernels is 96, the
PSNR metric will increase by 2.0% (0.53dB), and the MSE
metric will decrease by 5.3% (21.4). Overall, the enhance-
ment performance is better when the number of convolution
kernels is 384. From Tab. 7, although intuitively reducing
the information conversion ratio can improve the video en-
hancement effect, the drastic changes in the number of net-
work channels also have a negative impact on the network
performance. Therefore, when the number of convolution
kernels is 1536, the network performance is poor.

1.4. More visual comparisons.

We present more visual comparisons between UVE-Net
and other methods in Fig. 4, Fig. 5, and Fig. 6. As shown
in Fig. 4, our method has better color restoration effects and
we can see the details of underwater plants and soil more
clearly. From Fig. 5 and Fig. 6, it can be seen that our
method has realistic image colors and textures. We also
display the comparison of enhancement effects of different
methods on real underwater videos in the provided video
materials.

2. More discussions.

The UVEB dataset selects the optimal enhancement re-
sults from 20 enhancement methods as the original data’s
Ground Truth (GT). To some extent, it embodies the advan-
tages of most current methods. Thus, it is unsurprising that
our method trained on the UVEB dataset can achieve better
enhancement results. We would like to share some issues
we meet in this work, as well as discussions on the UVEB
dataset and the UVE-Net.

2.1. No-reference underwater image quality evalu-
ation metrics

Unlike other works, we did not use no-reference under-
water image quality evaluation metrics to evaluate the en-
hancement results because these evaluation metrics are not
accurate enough for underwater video quality evaluation.

We show the evaluation results of three existing no-
reference underwater image quality evaluation metrics in
Fig. 3. The top row shows the image with better quality,
while the bottom row shows the image with poorer quality.
We can see that three metrics give higher ratings to inferior-
quality images. Generally, the better the image quality, the
higher the UCIQE [13], CCF [15], and FUDM [14] assess-
ment scores of the image. These metrics may give incor-
rect ratings because the image contrast in the bottom row
is higher. These evaluation metrics overly rely on image
contrast and appear inflexible. We also measured the en-
hancement results of 20 methods on the UVEB test dataset
using the UCIQE[13] metric. We compared the evaluation



Table 2. Performance in resource-constrained environments. (INT8 stands for Tensort’s accelerated INT8 quantization model)

GPU A40 RTX3090 RTX3060 RTX3070 (laptop) Orin NX(INT8)
CPU Xeon Silver 4314 Xeon Silver 4314 i7-12700H i7-11800H Arm Cortex-A78AE

2K Inference time (s)↓ 0.0445 0.0404 0.090 0.120 0.162

Raw Enhanced

Figure 2. Visual comparisons on feature point matching tasks.

Table 3. Evaluate results on video quality metric (VQM for short).

Method CLAHE USUIR Uranker UVE-Net (ours)
VQM↓ 1.301 1.027 0.6520 0.6305

results of UCIQE[13] with those of PSNR in Tab. 8. We
find that the poorer-performing methods UDCP [16] and
HE [17] obtain higher UCIQE[13] scores. This abnormal
phenomenon also indicates that the erroneous evaluation ex-
amples in Fig. 3 are not accidental individual cases, and the
existing no-reference underwater image quality evaluation
methods need to be further developed and improved.

Designing learning-based video quality evaluation meth-
ods trained with large-scale data may be a good solution.
The video quality scores with the UVEB dataset also pro-
vide convenience for future works on no-reference under-
water video quality assessment.

2.2. Discussions on UVEB and UVE-Net

Similar to previous underwater image enhancement
datasets, the quality of GT for some samples in the UVEB
dataset may not be perfect due to the limitations of exist-
ing underwater image enhancement methods. This problem
is difficult to solve unless sufficiently excellent underwa-
ter image/video enhancement methods appear. To some ex-
tent, developing datasets and learning-based underwater im-
age/video enhancement methods are mutually promoting.
Finely annotated datasets bring better methods, and better
methods can build higher-quality new datasets. Our main
purpose in constructing the UVEB dataset is also to pro-
mote the development of underwater video/image enhance-
ment methods.

The large-scale underwater videos contained in the
UVEB dataset also provide rich raw materials for other un-

derwater visual tasks. The video score information attached
to the UVEB dataset can not only be used for the underwa-
ter video quality assessment task but also serve as additional
auxiliary information to facilitate future work in designing
better underwater video enhancement methods.

The value of UVE-Net lies in completing inter-frame in-
formation exchange by passing action instructions (convo-
lutional kernels) and proposing a practical underwater video
enhancement framework. People can replace residual mod-
ules with existing network structures as needed. We use the
residual module to facilitate the construction of an under-
water video enhancement baseline.

3. More details in Labeled Sample Generation
The 15 observers are aged between 22 and 27, includ-

ing seven males and eight females. Due to the degrada-
tion types of enhanced underwater videos, including vari-
ous types of color deviation, insufficient lighting, artifacts,
blurring, noise, etc. Before observers score the quality of all
videos, We first select 1743 videos (83×21) covering vari-
ous scenarios and degradation types for the assessment test.
We noted three issues during the test:
1. Before observers understand the overall video quality,

their ratings are unstable and inaccurate.
2. When observers are required to double-check videos af-

ter a period, the ratings before and after vary greatly.
3. The workload of annotating 21×1308 videos (20 meth-

ods) is enormous, and the enhancement results of some
methods are generally poor. Scoring multiple enhance-
ment results for a video is not necessary.
For issue 1, we designed a “pretext task” to establish

the observers’ perception of the overall video quality before
labeling. Firstly, we chose 150 videos with rating spans
with various types of videos to construct the example li-



Table 4. Comparison with video enhancement methods. (C:channels R:Resnet blocks)

Method setting DST-Net C:64,R:15(default) DST-Net C:24,R:15 UVE-Net-s UVE-Net
Memory(G)↓ 9.7832 8.2695 2.6162 5.404

2K Inference time(s)↓ 0.4154 0.141 0.0404 0.4533
PSNR(dB)↑ 25.3352 24.8576 24.43 26.27

UCIQE:0.45
FDUM:0.18

CCF:7.36

UCIQE:0.50
FDUM:0.23

CCF:7.08

UCIQE:0.58
FDUM:0.22

CCF:38.36

UCIQE:0.44
FDUM:0.17

CCF:6.90

UCIQE:0.61
FDUM:0.29
CCF:43.00

UCIQE:0.59
FDUM:0.33

CCF:14.74

UCIQE:0.60
FDUM:0.30

CCF:44.56

UCIQE:0.63
FDUM:0.38
CCF:45.04

Figure 3. Visual comparisons in terms of UCIQE [13], FUDM [14], and CCF [15] metrics. Better image quality does not receive higher
evaluation scores.

Table 5. The impact of scene change speed on UVE-Net perfor-
mance.

Scene change speed ×1(default) ×2 ×4 ×8
Results PSNR (dB)↑ 23.7137 23.7114 23.7045 23.7095

Table 6. The impact of adjacent frame water body changes on
enhancement effect.

Guidance way C guide B A guide B B guide B (default)
Adjacent frame sequence ...BCBBCB... ...BABBAB... ...BBBBBB...(default)

Results PSNR(dB)↑ 21.36 11.36 23.37

Table 7. Ablation on the number of convolutional kernels used for
guidance.

Number PSNR(dB)↑ MSE(×103 )↓

96 26.80 0.4273
384 26.27 0.4059
1536 23.11 0.5432

brary. Secondly, we asked observers to score and sort the
150 videos in increasing order of quality. Next, we asked
the observers about the reasons for ranking and scoring any
videos. When observers could not give reasons, they were
asked to reorder the videos. We repeated the process until
the observers were able to justify their scoring. After scor-
ing through the videos in the example library, observers can
understand the overall video quality and form reasonable

Table 8. Quantitative comparisons in terms of UCIQE [13] and
PSNR metrics on UVEB dataset.

Methods PSNR(dB)↑ UCIQE [13]↑
PUIE [18] 24.21 0.5486

URanker [19] 23.93 0.5682
USUIR [10] 21.64 0.6199
LANet [20] 21.49 0.5365

CLAHE [21] 19.71 0.5592
Red Channle [22] 19.61 0.5410

CLUIE [23] 19.44 0.5517
MLLE [9] 18.79 0.5891

retinex-based [3] 18.75 0.5915
FspiralGAN [24] 18.67 0.6288
fusion-based [2] 17.73 0.6350

WWPF [11] 17.67 0.6049
GC [25] 16.61 0.4634

MetaUE [26] 15.91 0.5535
HE [17] 15.78 0.6596

FA+Net [27] 15.34 0.5483
GDCP [4] 13.33 0.5591

MSCNN [28] 13.17 0.5478
DCP [29] 13.03 0.5432

UDCP [16] 10.75 0.5697

evaluation logic.
For issue 2, we disrupted the order of the 150 videos



Raw MSCNN [28] MLLE [9]

CLUIE [23] Ours FspiralGAN [24]

USUIR [10] URanker [19] WWPF [11]

Figure 4. Visual comparisons with state-of-the-art methods on real underwater scenes.

Raw MSCNN [28] MLLE [9]

CLUIE [23] Ours FspiralGAN [24]

USUIR [10] URanker [19] WWPF [11]

Figure 5. Visual comparisons with state-of-the-art methods on real underwater scenes.

and asked observers to reorder the videos one day later. If
the difference between the observer’s ratings for the same
video was greater than 5 points, the observer was asked
to reorder the videos and repeat this checking process the
next day until the observer gave a relatively stable rating

for the same video. The sorted example libraries obtained
by each observer through the process were used as respec-
tive video quality scales. Observers could view their scales
if they were unsure of their ratings and watch the videos
many times to give more definitive ratings.



Raw MSCNN [28] MLLE [9]

CLUIE [23] Ours FspiralGAN [24]

USUIR [10] URanker [19] WWPF [11]

Figure 6. Visual comparisons with state-of-the-art methods on real underwater scenes.

For issue 3, to reduce the workload, we asked observers
to score the 83 sets of videos and selected the best 10 meth-
ods based on the total points of enhancement results. For
the remaining videos, the observers only needed to select
the optimal enhancement result from 10 better methods and
score the optimal enhancement result and the raw video.

Observers can use the raw video and 10 better enhance-
ment results as a set. These observers were advised to com-
plete one set of video assessments in about 5 minutes and
40 to 50 sets per day. Observers could schedule their own
annotation time for free but were required to watch their ex-
ample scales before each day’s annotation to stabilize their
ratings further.
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