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Meth. Data. Raw Enh.
∆

Comp.
∆

to raw to raw

[14]
DIV2K 0.51 0.49 -0.02 0.67 +0.16
Flickr2K 0.51 0.49 -0.02 0.66 +0.15

[15]
DIV2K 0.66 0.33 -0.33 0.71 +0.05
Flickr2K 0.62 0.31 -0.31 0.64 +0.02

Table 1. Discriminator-evaluated realism scores for raw, enhanced,
and compressed images. Higher scores indicate greater perceived
realism. The results reveal that existing methods regard com-
pressed images as more realistic than raw images.

1. Further Analysis of Enhancement Bias To-
wards Compression Domain

In the main paper, our findings for BPG-compressed im-
ages with QP set to 37 highlighted the prevalent enhance-
ment bias towards the compression domain. To extend this
investigation, this section presents analogous observations
for JPEG-compressed images with a QF of 30, considering
the widespread use of both BPG and JPEG codecs in image
compression.

As delineated in Tab. 1, while discriminators effectively
differentiate between enhanced and raw images, assigning
higher realism scores to the latter, a notable difficulty arises
in distinguishing compressed images from raw ones. More
strikingly, compressed images receive higher realism scores
than their raw counterparts. This trend signifies a perceived
realism in the compression domain, thereby inadvertently
contributing to the enhancement bias towards this domain.

Fig. 1 illustrates a consistent pattern where the enhance-
ment domain more closely aligns with the compression do-
main rather than the raw domain. Horizontal deviations,
ranging from -2.52% to -26.03%, further corroborate the
widespread bias towards the compression domain across
various datasets and metrics.

2. Extended Results of Objective Quality Eval-
uation

The main paper detailed the objective quality results of en-
hanced BPG-compressed images with QP set to 37. We
now present, in Tabs. 2 to 5, the objective quality for other
QP settings and JPEG-compressed images. Consistently,
our method shows enhancement over perception-driven SR
baselines [14, 15] across all evaluated metrics. Despite
these baselines outperforming traditional fidelity-oriented

methods in most aspects, they generally lag in PSNR, a met-
ric not entirely aligned with perceptual quality as noted by
[1]. However, our method successfully boosts the PSNR
performance of these baselines, marking a significant ad-
vancement in the field of perception-driven quality enhance-
ment. In essence, our approach not only achieves state-of-
the-art performance in perceptual quality enhancement of
compressed images but also substantially improves fidelity
as achieved by SR baseline methods.

3. Additional Evaluation of Rate-Distortion
Performance

Building on the main paper’s rate-distortion performance
analysis using FID and LPIPS, Fig. 2 extends this evaluation
to additional metrics for both BPG-compressed and JPEG-
compressed images. Our method’s rate-distortion curves
consistently outperform those of the compared methods, un-
derscoring superior image quality enhancement across var-
ious codecs and bitrates.

Additionally, we assess the rate-distortion performance
using the BD-BR metric for JPEG-compressed images, sup-
plementing the BPG-focused analysis in the main paper. As
depicted in Tab. 6, our approach achieves significant bitrate
reductions while preserving perceptual quality, evident in
the minimal BD-BR values. Notably, even when consider-
ing PSNR, our method records a baseline performance en-
hancement of at least 2.73%. Overall, this comprehensive
analysis affirms our method’s advancement in both rate-
perception and rate-fidelity performance.

4. Additional Visual Demonstrations
To further illustrate the impact of our method in mitigating
enhancement bias, Figs. 3 and 4 provide additional visual
demonstrations. Compared methods often exhibit a stronger
resemblance of enhanced images to their compressed coun-
terparts, as evidenced by weaker residuals. In contrast, our
method distinctly generates images with more vivid details,
closely mirroring the residuals of raw images.
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Figure 1. Similarity scores between compression, raw, and enhancement domains. Lower FID and LPIPS scores indicate greater similarity.
The horizontal deviation of each vertex relative to the centroid of its base, calculated with float precision on original data, is also shown.
The results underscore the enhancement bias, demonstrating a closer alignment of the enhancement domain with the compression domain
than with the raw domain.

QP Metric Comp. [5] [13] [18] [6] [20] [16] [17] [14] [15]
Ours Ours
w/ [14] w/ [15]

27

↑ AHIQ [9] .513 .529 .534 .533 .534 .530 .532 .534 .510 .518 .525 .535
↑ CLIP. [12] .620 .647 .646 .645 .648 .645 .646 .644 .661 .658 .670 .668
↓ DISTS [4] .058 .060 .066 .066 .065 .066 .066 .065 .026 .025 .024 .024
↓ FID [7] 1.68 1.69 1.71 1.76 1.84 1.76 1.81 1.78 2.02 2.15 1.67 1.90
↑ Hyper. [11] .556 .576 .596 .600 .602 .594 .598 .601 .568 .581 .586 .602
↓ LPIPS [19] .094 .094 .093 .093 .090 .093 .092 .091 .049 .045 .045 .043
↑ MUSIQ [8] 66.2 66.7 67.1 67.1 67.1 67.0 67.0 67.0 65.0 65.6 65.6 66.3
↓ NIQE [10] 3.40 3.58 3.64 3.65 3.63 3.65 3.64 3.64 3.00 3.09 2.90 2.91
↓ PI [2] 3.63 3.76 3.83 3.81 3.80 3.81 3.81 3.91 3.21 3.30 3.15 3.18
↑ PSNR (dB) 35.9 36.5 36.7 36.8 37.0 36.8 36.9 37.0 34.1 34.8 34.7 35.5
↑ TOPIQ [3] .917 .918 .918 .918 .920 .918 .919 .920 .928 .929 .931 .931

32

↑ AHIQ [9] .482 .495 .503 .501 .504 .502 .503 .503 .489 .491 .502 .509
↑ CLIP. [12] .571 .606 .609 .610 .618 .608 .611 .611 .666 .656 .674 .668
↓ DISTS [4] .089 .095 .102 .102 .100 .103 .102 .101 .041 .042 .038 .039
↓ FID [7] 4.51 4.66 4.68 4.77 4.86 4.78 4.72 4.73 4.36 5.63 3.87 4.19
↑ Hyper. [11] .515 .553 .577 .581 .588 .582 .581 .583 .566 .573 .584 .594
↓ LPIPS [19] .149 .146 .146 .145 .141 .145 .143 .142 .078 .077 .073 .073
↑ MUSIQ [8] 64.7 65.4 66.0 66.1 66.2 66.0 66.1 66.1 65.4 65.6 65.9 66.5
↓ NIQE [10] 3.75 4.00 4.10 4.08 4.08 4.11 4.10 4.08 2.94 3.11 2.83 2.89
↓ PI [2] 3.94 4.12 4.19 4.17 4.18 4.19 4.18 4.27 3.19 3.36 3.13 3.19
↑ PSNR (dB) 33.3 33.8 34.0 34.1 34.3 34.1 34.2 34.2 31.7 32.3 32.2 33.2
↑ TOPIQ [3] .859 .856 .855 .855 .860 .854 .857 .860 .894 .896 .902 .901

Table 2. Objective quality of enhanced BPG-compressed images with QP set to 27 and 32. All results are to three significant figures.
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QP Metric Comp. [5] [13] [18] [6] [20] [16] [17] [14] [15]
Ours Ours
w/ [14] w/ [15]

42

↑ AHIQ [9] .371 .370 .372 .375 .384 .375 .381 .380 .394 .401 .414 .425
↑ CLIP. [12] .397 .441 .464 .471 .515 .479 .487 .490 .651 .631 .660 .645
↓ DISTS [4] .170 .179 .186 .186 .183 .188 .186 .185 .088 .098 .083 .092
↓ FID [7] 20.7 22.2 22.7 23.3 24.0 23.1 23.2 23.1 15.7 21.0 15.1 17.5
↑ Hyper. [11] .379 .451 .484 .492 .518 .492 .494 .500 .548 .545 .572 .568
↓ LPIPS [19] .313 .304 .302 .300 .292 .302 .297 .294 .194 .181 .180 .174
↑ MUSIQ [8] 53.4 56.6 57.9 58.0 59.2 58.1 58.2 58.6 64.4 63.3 65.6 65.0
↓ NIQE [10] 4.93 5.08 5.17 5.17 5.25 5.25 5.23 5.27 2.89 3.36 2.73 3.10
↓ PI [2] 4.96 5.04 5.08 5.08 5.11 5.13 5.10 5.14 3.21 3.62 3.09 3.40
↑ PSNR (dB) 28.3 28.7 28.8 28.9 29.1 28.9 29.0 29.0 26.4 27.3 27.0 28.0
↑ TOPIQ [3] .532 .539 .542 .543 .558 .542 .547 .551 .652 .655 .673 .672

47

↑ AHIQ [9] .295 .287 .288 .292 .302 .292 .298 .299 .305 .338 .332 .360
↑ CLIP. [12] .295 .340 .367 .373 .443 .400 .418 .409 .616 .621 .632 .636
↓ DISTS [4] .223 .229 .234 .234 .234 .238 .236 .236 .127 .144 .119 .133
↓ FID [7] 43.3 46.5 47.8 48.6 51.2 48.5 51.4 49.2 35.0 43.1 31.6 38.1
↑ Hyper. [11] .305 .372 .406 .410 .444 .418 .424 .427 .543 .539 .568 .564
↓ LPIPS [19] .432 .410 .404 .402 .394 .405 .399 .396 .294 .266 .276 .255
↑ MUSIQ [8] 42.9 48.4 49.9 50.2 51.9 50.4 50.8 51.4 62.7 61.5 64.3 63.6
↓ NIQE [10] 6.08 5.84 5.86 5.89 6.03 6.01 6.01 6.05 2.80 3.50 2.62 3.25
↓ PI [2] 5.91 5.78 5.77 5.79 5.85 5.85 5.85 5.88 3.16 3.82 3.02 3.54
↑ PSNR (dB) 25.9 26.2 26.3 26.4 26.5 26.4 26.5 26.5 23.6 25.0 24.1 25.5
↑ TOPIQ [3] .389 .411 .418 .421 .434 .419 .426 .428 .478 .503 .492 .516

Table 3. Objective quality of enhanced BPG-compressed images with QP set to 42 and 47. All results are to three significant figures.

QF Metric Comp. [5] [13] [18] [6] [20] [16] [17] [14] [15]
Ours Ours
w/ [14] w/ [15]

10

↑ AHIQ [9] .388 .406 .419 .421 .436 .427 .432 .431 .432 .438 .451 .464
↑ CLIP. [12] .463 .470 .489 .503 .537 .509 .516 .502 .654 .640 .666 .653
↓ DISTS [4] .225 .164 .168 .167 .159 .171 .166 .163 .075 .081 .072 .078
↓ FID [7] 30.7 24.1 21.8 20.8 17.8 20.5 17.1 17.4 15.3 18.1 14.7 15.4
↑ Hyper. [11] .352 .405 .441 .451 .499 .463 .476 .474 .549 .560 .570 .579
↓ LPIPS [19] .323 .272 .269 .266 .251 .266 .257 .254 .155 .147 .146 .140
↑ MUSIQ [8] 47.5 56.5 59.1 59.4 61.3 59.8 60.1 60.5 64.8 64.5 65.7 65.9
↓ NIQE [10] 6.49 4.76 4.70 4.71 4.83 4.78 4.84 4.81 2.86 3.18 2.72 2.94
↓ PI [2] 5.39 4.69 4.68 4.67 4.74 4.72 4.73 4.73 3.15 3.49 3.07 3.26
↑ PSNR (dB) 27.1 28.6 28.8 28.9 29.3 29.0 29.2 29.2 26.8 27.8 27.3 28.2
↑ TOPIQ [3] .481 .627 .644 .649 .673 .647 .657 .663 .751 .746 .766 .768

20

↑ AHIQ [9] .450 .468 .486 .483 .495 .485 .486 .486 .483 .478 .499 .500
↑ CLIP. [12] .604 .563 .576 .585 .599 .582 .585 .583 .663 .647 .675 .661
↓ DISTS [4] .146 .122 .126 .124 .117 .127 .123 .120 .048 .051 .046 .048
↓ FID [7] 10.7 8.27 7.24 6.90 6.02 7.05 6.05 6.56 6.13 6.95 5.40 5.50
↑ Hyper. [11] .396 .465 .506 .514 .541 .516 .520 .523 .564 .569 .582 .591
↓ LPIPS [19] .207 .193 .188 .186 .176 .187 .182 .178 .090 .088 .085 .083
↑ MUSIQ [8] 57.4 62.5 64.0 64.3 65.0 64.3 64.5 64.6 65.4 65.3 65.9 66.5
↓ NIQE [10] 4.90 4.32 4.30 4.29 4.36 4.35 4.34 4.34 2.94 3.11 2.82 2.88
↓ PI [2] 4.48 4.30 4.29 4.27 4.33 4.32 4.31 4.32 3.17 3.39 3.11 3.19
↑ PSNR (dB) 29.6 31.0 31.3 31.5 31.8 31.4 31.6 31.6 29.3 30.1 29.8 30.6
↑ TOPIQ [3] .714 .798 .809 .813 .829 .810 .818 .823 .870 .865 .880 .878

Table 4. Objective quality of enhanced JPEG-compressed images with QF set to 10 and 20. All results are to three significant figures.



QF Metric Comp. [5] [13] [18] [6] [20] [16] [17] [14] [15]
Ours Ours
w/ [14] w/ [15]

30

↑ AHIQ [9] .479 .497 .509 .510 .517 .512 .508 .510 .498 .498 .511 .518
↑ CLIP. [12] .637 .601 .610 .617 .623 .614 .616 .615 .663 .649 .672 .662
↓ DISTS [4] .112 .100 .103 .102 .095 .103 .101 .099 .037 .038 .035 .035
↓ FID [7] 5.38 4.24 3.65 3.41 3.16 3.53 3.23 3.60 3.25 3.89 2.85 3.17
↑ Hyper. [11] .433 .493 .531 .538 .554 .539 .541 .542 .564 .568 .580 .589
↓ LPIPS [19] .154 .155 .150 .149 .141 .149 .145 .145 .084 .081 .059 .057
↑ MUSIQ [8] 60.9 64.6 65.7 65.9 66.3 65.8 65.9 65.9 65.1 65.3 65.5 66.1
↓ NIQE [10] 4.22 4.12 4.08 4.08 4.11 4.11 4.11 4.10 3.02 3.10 2.91 2.90
↓ PI [2] 4.07 4.10 4.09 4.09 4.10 4.11 4.09 4.11 3.21 3.35 3.16 3.18
↑ PSNR (dB) 30.9 32.3 32.7 32.8 33.1 32.8 33.0 33.0 30.6 31.3 31.1 31.8
↑ TOPIQ [3] .820 .862 .870 .872 .882 .870 .876 .878 .906 .901 .911 .910

40

↑ AHIQ [9] .493 .512 .523 .524 .528 .524 .523 .523 .507 .508 .520 .529
↑ CLIP. [12] .645 .620 .627 .629 .634 .630 .631 .629 .664 .653 .673 .663
↓ DISTS [4] .094 .086 .089 .089 .082 .089 .087 .085 .029 .030 .027 .028
↓ FID [7] 3.16 2.52 2.16 2.10 1.94 2.21 2.05 2.19 2.15 2.58 1.92 2.10
↑ Hyper. [11] .451 .508 .545 .550 .563 .548 .548 .546 .565 .572 .583 .591
↓ LPIPS [19] .125 .131 .127 .126 .118 .126 .123 .124 .049 .048 .046 .045
↑ MUSIQ [8] 62.5 65.4 66.3 66.4 66.7 66.5 66.5 66.3 65.3 65.4 65.6 66.1
↓ NIQE [10] 3.82 3.93 3.88 3.89 3.92 3.91 3.88 3.93 3.07 3.13 2.96 2.92
↓ PI [2] 3.81 3.95 3.94 3.93 3.95 3.95 3.94 4.04 3.25 3.35 3.19 3.19
↑ PSNR (dB) 31.8 33.2 33.6 33.7 34.0 33.7 33.8 33.8 31.5 32.2 31.9 32.7
↑ TOPIQ [3] .869 .891 .896 .897 .905 .897 .901 .901 .920 .917 .923 .923

50

↑ AHIQ [9] .503 .523 .532 .535 .537 .531 .533 .533 .514 .514 .525 .538
↑ CLIP. [12] .644 .631 .638 .641 .642 .639 .640 .638 .664 .653 .673 .664
↓ DISTS [4] .082 .076 .078 .076 .071 .077 .076 .074 .024 .025 .023 .023
↓ FID [7] 2.13 1.78 1.56 1.57 1.44 1.54 1.64 1.67 1.55 1.96 1.32 1.56
↑ Hyper. [11] .472 .521 .554 .555 .566 .558 .560 .550 .567 .574 .584 .591
↓ LPIPS [19] .103 .114 .109 .107 .101 .108 .105 .107 .042 .040 .038 .037
↑ MUSIQ [8] 63.4 65.9 66.7 66.8 66.9 66.7 66.8 66.5 65.2 65.4 65.6 66.1
↓ NIQE [10] 3.48 3.79 3.75 3.75 3.77 3.76 3.78 3.94 3.09 3.12 2.99 2.96
↓ PI [2] 3.62 3.84 3.81 3.81 3.82 3.82 3.82 3.84 3.25 3.33 3.20 3.21
↑ PSNR (dB) 32.5 33.9 34.3 34.4 34.7 34.4 34.5 34.5 32.2 32.8 32.6 33.4
↑ TOPIQ [3] .894 .907 .911 .912 .917 .912 .914 .914 .928 .925 .930 .929

Table 5. Objective quality of enhanced JPEG-compressed images with QF set to 30, 40, and 50. All results are to three significant figures.

Metric [5] [13] [18] [6] [20] [16] [17] [14] [15]
Ours Ours
w/ [14] w/ [15]

AHIQ [9] -4.79 -8.98 -8.58 -11.8 -9.18 -9.92 -9.76 -9.47 -8.28 -14.7 -14.8
CLIP. [12] +5.58 +3.74 +2.22 -.292 +2.62 +2.09 +2.52 -99.8 -22.2 N/A -98.9
DISTS [4] -5.80 -4.95 -5.39 -7.23 -4.81 -5.63 -6.26 -29.5 -27.5 -31.0 -28.8
FID [7] -3.59 -5.18 -5.76 -7.49 -5.63 -7.53 -6.75 -7.57 -6.09 -8.81 -8.66
Hyper. [11] -14.6 -22.5 -24.1 -30.1 -25.8 -28.1 -27.7 N/A N/A N/A N/A
LPIPS [19] -2.31 -2.92 -3.23 -4.63 -3.09 -3.82 -4.19 -21.5 -22.1 -20.2 -20.8
MUSIQ [8] -12.2 -16.7 -17.4 -21.3 -17.9 -18.5 -19.5 -74.1 -80.6 N/A N/A
PSNR (dB) -8.02 -9.65 -10.3 -12.0 -10.2 -11.3 -11.3 +1.68 -2.99 -1.05 -5.92
TOPIQ [3] -6.65 -7.65 -7.94 -9.45 -7.72 -8.45 -8.88 -13.8 -13.3 -15.1 -14.9

Table 6. BD-BR (%) performance applied to JPEG-compressed images. Negative values indicate a reduction in bit rate for the same
quality. The notation “N/A” is used where the output result is excessively large for presentation. All results are to three significant figures.
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Figure 2. Rate-distortion curves comparing bits per pixel (BPP) against distortion measured by various metrics.
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Figure 3. Visualization of residual to the compressed image.
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Figure 4. Visualization of residual to the compressed image.
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