
SVGDreamer: Text Guided SVG Generation with Diffusion Model

Supplementary Material

Overview

This supplementary material is organized into several sec-
tions that provide additional details and analysis related to
our work on SVGDreamer. Specifically, it will cover the
following aspects:
• In section A, we present additional qualitative results of

SVGDreamer, demonstrating its ability to generate SVGs
with high editability, visual quality, and diversity.

• In section B, we demonstrate the potential applications of
SVGDreamer in poster design and icon design.

• In section C, we provide more implementation details of
SVGDreamer.

• In section D, We explain how to identify semantic objects
in SIVE prompts.

• In section E, we conduct additional ablation studies
to demonstrate the effects of CFG weights (see Ap-
pendix E.1), ReFL (see Appendix E.2), the number of
vector particles (see Appendix E.3), and the number of
paths (see Appendix E.4).

• In section F, we provide example results from using
VPSD for raster image synthesis.

• In section G, we show the pseudo code of SVGDreamer.
Code is available now 1.

A. Additional Qualitative Results

Editability. Our tool, SVGDreamer, is designed to gen-
erate high-quality vector graphics with versatile editable
properties, empowering users to efficiently reuse synthe-
sized vector elements and create new vector graphics. In our
manuscript, Fig. 5 showcases two posters where each char-
acter is generated using SVGDreamer. Additionally, we
present further examples in Fig. 7. These generated SVGs
can be decomposed into background and foreground ele-
ments, which can then be recombined to create new SVGs.
Visual Quality and Diversity. In Fig. 8, we present ad-
ditional examples generated by SVGDreamer, showcasing
its ability to synthesize diverse object-level and scene-level
vector graphics based on text prompts. Notably, our model
can generate vector graphics with different styles, such as
oil painting, watercolor, and sketch, by manipulating the
type of primitives and text prompts. By incorporating the
VPSD and ReFL into our model, SVGDreamer produces
richer details compared to the state-of-the-art method Vec-
torFusion.

It is important to highlight that our model can achieve
different styles without relying on additional reference style

1https://github.com/ximinng/SVGDreamer

images. Existing approaches for generating stylized vector
graphics, such as StyleClipDraw, typically follow a style
transfer pipeline used for raster images, which requires an
additional style image as a reference. In contrast, SVG-
Dreamer, being built upon a T2I model, can simply inject
style information through text prompts. For instance, in
the second example, we can obtain an oil painting in Van
Gogh’s style by using a text prompt.

B. Applications of SVGDreamer

In this section, we will demonstrate the utilization of SVG-
Dreamer for synthesizing vector posters and icons. Poster

Design. A poster is a large sheet used for advertising
events, films, or conveying messages to people. It usu-
ally contains text and graphic elements. While existing T2I
models have been developing rapidly, they still face chal-
lenges in text generation and control. On the other hand,
SVG offers greater ease in text control. In Fig. 9, we com-
pare the posters generated by our SVGDreamer with those
produced by four T2I models. It is important to note that all
results generated by these T2I models are in raster format.

We will start by explaining the usage of our SVG-
Dreamer tool for poster design. Initially, we employ SVG-
Dreamer to generate graphic content. Then, we utilize mod-
ern font libraries to create vector fonts, taking advantage of
SVG’s transform properties to precisely control the font lay-
out. Ultimately, we combine the vector images and fonts to
produce comprehensive vector posters. To be more specific,
we employ the FreeType font library 2 to represent glyphs
using vectorized graphic outlines. In simpler terms, these
glyph’s outlines are composed of lines, Bézier curves, or B-
Spline curves. This approach allows us to adjust and render
the letters at any size, similar to other vector illustrations.
The joint optimization of text and graphic content for en-
hanced visual quality is left for future work.

As depicted in Fig. 9, both Stable Diffusion [26] (the first
column) and DeepFloyd IF [37] (the second column) dis-
play various text rendering errors, including missing glyphs,
repeated or merged glyphs, and misshapen glyphs. Glyph-
Control [50] (the third column) occasionally omits individ-
ual letters, and the fonts obscure content, resulting in areas
where the fonts appear to lack content objects. TextDif-
fuser [2] (the fifth column) is capable of generating fonts
for different layouts, but it also suffers from the artifact of
layout control masks, which disrupts the overall harmony
of the content. In contrast, posters created using our SVG-
Dreamer are not restricted by resolution size, ensuring the

2http://freetype.org/index.html

https://github.com/ximinng/SVGDreamer
http://freetype.org/index.html


SVG1 BG 1 FG1 BG1+FG2+FG3 BG 1+FG4

SVG 2 BG 2 FG2 FG1 + BG2 BG2+FG5

FG3

FG4

FG5

Generated SVGs Generated SVG assets Generated SVG assets Recombined SVGs

Figure 7. Examples showcasing the editability of the results generated by our SVGDreamer.

text remains clear and legible. Moreover, our approach of-
fers the convenience of easily editing both fonts and layout,
providing a more flexible poster design approach.
Icon Design. In addition to posters, SVGDreamer can be
applied in icon design (as shown in the Fig. 10). We use
SVGDreamer to obtain the graphic contents, and then create
the polygon and circle layout by defining def tags in the
SVG file. Then, we append the vector text paths to the end
of the SVG file in order to obtain a complete vector icon.

C. Implementation Details

Our method is based on the pre-trained Stable Diffusion
model [26]. We use the Adam optimizer with �1 = 0.9,
�2 = 0.9, ✏ = 1e � 6 for optimizing SVG path parameters
✓ = {Pi, Ci}ni=1. We use a learning rate warm-up strategy.
In the first 50 iterations, we gradually increase the control
point learning rate from 0.01 to 0.9, and then employ expo-
nential decay from 0.8 to 0.4 in the remaining 650 iterations
(a total of 700 iterations). For the color learning rate, we set
it to 0.1 and the stroke width learning rate to 0.01. We adopt
AdamW optimizer with �1 = 0.9, �2 = 0.999, ✏ = 1e�10,
lr = 1e � 5 for the training of LoRA [10] parameters. In
the majority of our experiments, we set the particle number
k to 6, which means that 6 particles participate in the VPSD
(Sec. 3.2), LoRA update, and ReFL update simultaneously.
To ensure diversity and fidelity to text prompts in the syn-
thesized SVGs, while maintaining rich details, we set the
guidance scale of the Classifier-free Guidance (CFG [7])
to 7.5. During the optimization process, SVGDreamer re-
quires at least 31 GB memory on an Nvidia-V100 GPU to
produce 6 SVGs.

Synthesizing flat iconographic vectors, we allow path
control points and fill colors to be optimized. During the
course of optimization, many paths learn low opacity or
shrink to a small area and are unused. To encourage usage
of paths and therefore more diverse and detailed images,
motivated by VectorFusion [12], we periodically reinitial-

ize paths with fill-color opacity or area below a threshold.
Reinitialized paths are removed from optimization and the
SVG, and recreated as a randomly located and colored cir-
cle on top of existing paths.

D. Object Identification in SIVE Prompts

It is common for multiple nouns within a sentence to refer to
the same object. We present two examples in Fig. 11. In our
experiments, we did not employ a specific selection strategy
because the cross-attention maps for such nouns-for exam-
ple, “man” and “astronaut” – are very similar. Therefore,
choosing either “man” or “astronaut” produces similar re-
sults with our method. For more precise control, users may
utilize the cross-attention maps of the text prompt to iden-
tify the desired objects. In SIVE, users can use visual text
prompts to identify semantic objects.

E. Additional Ablation Studies

Next, we provide additional ablation experiments to demon-
strate the effectiveness of the proposed components.

E.1. Ablation on CFG [7] Weights

In this section, we explore how Classifier-free Guidances
(CFG) [7] affects the diversity of generated results. For
VPSD, we set the number of particles as 6 and run exper-
iments with different CFG values. For LSDS [12], we run
4 times of generation with different random seeds. The re-
sults are shown in Fig. 12. As shown in the figure, smaller
CFG provides more diversity. We conjecture that this is be-
cause the distribution of smaller guidance weights has more
diverse modes. However, when the CFG becomes too small
(e.g., CFG= 2), it cannot provide enough guidance to gen-
erate reasonable results. Therefore, in our implementation,
we set CFG to 7.5 as a trade-off between diversity and op-
timization stability. Note that SDS-based methods [12, 48]
do not work well in such small CFG weights. Instead, our



“Sydney opera house, 
oil painting, by Van 

Gogh”

“A colorful German 
shepherd in vector art.
trending on artstation”

“A phoenix coming 
out of the fire 
drawing. hand 

drawn painting. 
trending on 
artstation”

“Sepia ink wash 
landscape of ancient 
villages, Minimalist 

abstract art 
grayscale watercolor”

“Watercolor 
landscape painting 
ancient villages, ink 

painting”

“Full image of a 
Japanese sakura tree 

on a hill”

“An owl stands on a 
branch”

“Mario meets 
Pikachu. Pixel art.”

“Abstract Vincent 
van Gogh Oil 

Painting Elephant, 
featuring earthy 

tones of green and 
brown.”

Figure 8. More results generated by our SVGDreamer.



GlyphControl SVGDreamer (Ours)DeepFloyd IFStable Diffusion TextDiffuser 
Text Prompt:
"a man in an 
astronaut suit 
walking across a 
desert, planet mars 
in the background.”

Text Prompt:
"an astronaut 
walking across a 
jungle, cold color 
palette, muted 
colors ."

Text Prompt:
"a beautiful girl 
in a business suit 
walking across a 
street, street 
view in the 
background."

Glyph:
SPACE 

ADVENTURE 
Journey To Mars

Glyph:
SPACE 

ADVENTURE 
Journey To Mars

Glyph:
SHE 

POWER

Figure 9. Comparison of synthetic posters generated by different methods. The input text prompts and glyphs to be added to the posters
are displayed on the left side.

“An astronaut, the logo, vector art.””Bold logo icon in blue, black, white colors for a 
simplified version of Great Wave of Kanagawa”

Temple

Temple
“The logo of the Japanese mystery temple,, 
game art, cartoon, 3d animation style”

“A Starbucks coffee cup in black and white”

Starbucks Starbucks

Figure 10. Examples of synthetic icons. Note that the glyphs are
manually added.

A man in an astronaut suit walking

……

A beautiful photo of the Eiffel Tower

Figure 11. Visualizations of the cross-attention maps.

VPSD provides a trade-off option between CFG weight and
diversity, and it can generate more diverse results by simply
setting a smaller CFG.

E.2. Ablation on ReFL

In [45], only selected particles update the LoRA network in
each iteration. However, this approach neglects the learn-
ing progression of LoRA networks, which are used to rep-
resent variational distributions. These networks typically
require numerous iterations to approximate the optimal dis-
tribution, resulting in slow convergence. Unfortunately, the
randomness introduced by particle initialization can lead to
early learning of sub-optimal particles, which adversely af-
fects the final convergence result. In VPSD, we introduce
a Reward Feedback Learning (ReFL) method. This method
leverages a pre-trained reward model [49] to assign reward
scores to samples collected from LoRA model. Then LoRA
model subsequently updates from these reweighted sam-
ples. As indicated in Table 2, this led to a significant re-
duction in the number of iterations by almost 50%, result-
ing in a 50% decrease in optimization time. And improves
the aesthetic score of the SVG by filtering out samples with
low reward values in LoRA. Filtering out samples with low
reward values, as demonstrated in Table 1, enhances the aes-
thetic score of the SVG. The visual improvements brought
by ReFL are illustrated in Fig. 13.

E.3. Ablation on the Number of Vector Particles

we investigate the impact of the number of particles on the
generated results. We vary the number of particles in 1, 4, 8,
16 and analyze how this variation affects the outcomes. The
CFG of VPSD is set as 7.5. As shown in Fig. 14, the di-



VPSD 
CFG=100

VPSD 
CFG=25

VPSD 
CFG=7.5

VPSD 
CFG=2

SDS 
CFG=100

(a) VPSD results, 512 paths

SDS 
CFG=7.5

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6

(b) SDS-based results, 512 paths
Figure 12. Ablation on how Classifier-free Guidances (CFG) [7] weight affects the randomness. Smaller CFG provides more diversity. But
too small CFG provides less optimization stability. The prompt is “A photograph of an astronaut riding a horse”.

versity of the generated results is slightly larger as the num-
ber of particles increases. Meanwhile, the quality of gen-

erated results is not significantly affected by the number of
particles. Considering the high computation overhead asso-



“A photograph of an astronaut riding a horse.” “A phoenix coming out of the fire drawing. oil painting.”

W/O ReFL

With ReFL

Figure 13. Effect of the Reward Feedback Learning (ReFL) on the generated results. When employing ReFL, the visual quality of the
generated results is significantly enhanced.

16 particles

8 particles

4 particles

1 particles

Seed 1 Seed 2

Seed 2

Seed 1

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Seed 6 Seed 7 Seed 8

Figure 14. Ablation on the number of particles. The diversity of the generated results is slightly larger as the number of particles increases.
The quality of generated results is not significantly affected by the number of particles. The prompt is “A photograph of an astronaut riding
a horse”.

Table 2. Efficiency of our proposed ReFL in SVGDreamer.
Method Canvas Size Path Number Iteration Steps Time(min:sec)

W/O ReFL 224 * 224 128 500 13m15s

W ReFL 224 * 224 128 300 6m45s

W/O ReFL 600 * 600 256 500 14m21s

W ReFL 600 * 600 256 300 7m21s

ciated with optimizing vector primitive representations and
the limitations imposed by available computation resources,

we limit our testing to a maximum of 6 particles.

E.4. Ablation on the Number of Paths

This subsection analyzes the effect of different stroke num-
bers on VPSD synthetic vector images. Figure 15 shows
examples with 128, 256, 512, and 768 paths, from top to
bottom, using Iconography primitives. As the path count
increases, the image transitions from abstract to more con-
crete, and the level of detail notably improves. VPSD offers



Acrylic paint in the style of Leonid Afremov, Angkor Wat, Cambodia.

128 Paths

256 Paths

512 Paths

768 Paths

Figure 15. Effect of the number of paths on synthesized results.

VSD

VSPD

Figure 16. Comparison of the results from using VPSD and VSD
for 2D image synthesis.

superior visual details compared to SDS, including aspects
like water reflections. Additionally, VPSD better aligns
with text prompts.

F. VPSD for 2D Image Synthesis

In this work, VPSD is specifically designed for text-to-SVG
generation; however, it can also be adapted for 2D image
synthesis. As illustrated in Fig. 16, images synthesized by
VSD may exhibit displaced or incomplete object layouts,
resulting in samples that might not meet human aesthetic
preferences. In contrast, VPSD integrates a reward score
within its feedback learning process, which significantly en-
hances the quality of the generated images.

G. Algorithm for VPSD

We summarize the algorithm of Vectorized Particle-based
Score Distillation (VPSD) in Algorithm 1. First, VPSD ini-
tializes k(� 1) groups of SVG parameters, a pretrained dif-

fusion model ✏� parameterized by � and the LoRA layers
✏�est parameterized by �est, as the pretrained reward model
r. Note that only the diffusion model is pretrained with
frozen parameters, while LoRA [10] thaws some of its pa-
rameters. Subsequently, VPSD randomly selects a parame-
ter ✓ from the set of SVG parameters and generates a raster
image x based on this selection. The parameter ✓ is then up-
dated using Variational Score Distillation (VSD). k samples
are sampled using ✏�(y) and utilized to update the parame-
ters of �. This process is repeated until a satisfactory result
is obtained and the algorithm returns k groups of SVG pa-
rameters as the final output.

Algorithm 2 is the combination of VPSD and SIVE
(Semantic-driven Image Vectorizatio). This algorithm has
the same initialization as VPSD, but it needs to get a sam-
ple using diffusion model ✏� given text prompt y. In the
sampling process, it can obtain the sample’s correspond-
ing attention map. Depending on attention map, the algo-
rithm can get background mask and foreground mask. It
optimizes the SVG parameters according to the foreground
mask and background mask, respectively, and then fine-
tunes them using the VPSD algorithm.



Algorithm 1 Vectorized Particle-based Score Distillation (VPSD)
Require: Text prompt y. Number of particles k (� 1). Number of SVG primitives n (� 1). Pretrained Text-to-Img Diffusion

Model ✏�. Learning rates ⌘p for SVG path parameters. Learning rate ⌘e for diffusion model parameters. r represents the
pretrained reward model [49]. �r indicates reward feedback strength.

1: Initialize: k groups of SVG parameters {✓(1), · · · , ✓(n)} = {(P (i)
j , C

(i)
j )}nj=1, a pretrained diffusion model ✏� is param-

eterized by �, a LoRA [10] model ✏�est is parameterized by �est, the pretrained reward model r.
2: while not converged do

3: Randomly sample ✓ ⇠ {✓(i)}ki=1.
4: Render the SVG parameter ✓ to get a raster image x = R(✓).
5: ✓  � ✓ � ⌘pEt,✏,p,c

⇥
!(t)(✏�(zt; y, t)� ✏�est(zt); y, p, c, t)

@z
@✓

⇤

6: Sample w( k) samples using ✏�est(y).
7: � � �� ⌘er�

h
E✏,t k✏�est(zt; y, p, c, t)� ✏k

2
2 + �rEy,w [ (r(y, g�est(y)))]

i

8: end while

9: return {✓1, · · · ✓k}.

Algorithm 2 Semantic-driven Image Vectorization (SIVE) + VPSD
Require: Text prompt y. Number of particles k (� 1). Number of SVG primitives n (� 1). Pretrained Text-to-Img Diffusion

Model ✏�. Learning rates ⌘p for SVG path parameters. Learning rate ⌘e for diffusion model parameters. r represents the
pretrained reward model [49]. �r indicates reward feedback strength.

1: Initialize: k groups of SVG parameters {✓(1), · · · , ✓(n)} = {(P (i)
j , C

(i)
j )}nj=1, a noise prediction model ✏� parameter-

ized by �.
2: Sample a sample using ✏�(y).
3: Get the attention map corresponding to the i-th text token Mi

FG = softmax(QK
T
i )/
p
d

4: Get the background attention map MBG = 1� (
PO

i=1 Mi
FG)

5: Get the background mask and foreground masks M̂ = {{M̂FG}Oo=1,M̂BG}, respectively.
6: while not converged do

7: ✓
(1)  � ✓(1) � ⌘pr✓Eo(M̂i � I � M̂i � x)2

8: end while

9: Initialize: a LoRA [10] model ✏�est is parameterized by �est, the pretrained reward model r.
10: while not converged do

11: Randomly sample ✓ ⇠ {✓}ki=1.
12: Render the SVG parameter ✓ to get a raster image x = R(✓).
13: ✓  � ✓ � ⌘pEt,✏,p,c

⇥
!(t)(✏�(zt; y, t)� ✏�est(zt); y, p, c, t)

@z
@✓

⇤

14: Sample w( k) samples using ✏�est(y).
15: � � �� ⌘er�

h
E✏,t k✏�est(zt; y, p, c, t)� ✏k

2
2 + �rEy,w [ (r(y, g�est(y)))]

i

16: end while

17: return {✓1, · · · ✓k}.


