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G. Preliminaries of Quantum Computing
In this section, we first go over the basic concepts of QC
in Sec. G.1, and then introduce two important quantum
algorithms for this paper, Hadamard test and Quantum Phase
Estimation, in Sec. G.2 and Sec. G.3 respectively.
G.1. Quantum State, Gate, and Measurement
Analogue to the classical computing carried out in classi-
cal computers where the state of binary bits are changed
via logical gates, quantum computing is physically realized
by the quantum computer comprised of quantum bits and
quantum gates. The quantum bit named as qubit is the basic

unit of quantum computing, which is written in the conven-
tional Dirac notation, i.e., the qubit |0i and qubit |1i are
quantum versions of the classic bit 0 and bit 1 respectively.
Mathematically, one qubit is denoted as a 2-dimensional unit
vector, i.e., |0i = [1 0]T , |1i = [0 1]T . Accordingly, we
call the |0i and |1i are computational basis states since they
are orthonormal and can be spanned into R2. In a general
case, the qubit can be represented by a linear superposi-
tion of its two computational basis states, which is given as
|�i = ↵|0i+�|1i = [↵ �]> where ↵ and � are two complex
numbers namely amplitudes and |↵|2 + |�|2 = 1, which can
be also written as h�|�i = 1 where h�| denotes the conju-
gate transposition of |�i. For a quantum state comprised of
n qubits, it can be represented by a 2n-dimensional vector
whose l2-norm is 1 such as |01i = |0i ⌦ |1i = [0 1 0 0]T

where ⌦ denotes tensor product operation. We also use the
superscript notation |�i⌦n to indicate a quantum state com-
prised of n qubits in the same state |�i. There also exits
some entangled states that can not be decomposed by ten-
sor product operation. For example, the state comprised of
two qubits | i = 1p

2
|00i+ 1p

2
|11i can not be decomposed

into a tensor product of two individual qubits. However, the
entangled state would have the ability of storing much more
information since an entangled state containing n qubits hold
up to 2n non-zero amplitudes to encode the classic datum.

Given the initial qubits encoded the classical information,
quantum gates are implemented to transform the state of
qubits to achieve a given computing task. According to the
quantum mechanics, quantum gates are unitary operations to
ensure the normalization property of quantum states before
and after the transformation. For example, the Hadamard
gate H whose mathematical formulation is written as

H =
1p
2


1 1
1 �1

�
. (4)

By applying such gate on state |0i, the state is transformed to
another state given by H|0i = 1p

2
|0i+ 1p

2
|1i. The quantum

gate establishes the basic building block for quantum circuit.
After a sequence of unitary transformations, the result

would be generated and encoded in the final quantum states.
The result can not be observed until quantum measurement

is implemented to interact with the quantum system. The
measurement is described by an observable, M , a Hermitian

operator on the state space of the system being observed.
The information would be restored from the quantum state to
the classical representation by calculating average values for
measurements E(M) = h�|M |�i. For example, after doing



a measurement on state 1p
2
|0i+ 1p

2
|1i using an observable

|0ih0|� |1ih1|, the state will collapse to either |0i or |1i with
the same probability 50%.
G.2. Hadamard Test
In quantum mechanism, the fidelity is a measure of the over-
lap between two quantum states, which formally is defined
in an inner-product form as ffid = |h�| i|2 for two quantum
states |�i and | i. Let |�i and | i be two n-qubit quantum
states that are prepared by unitary operators U� and U re-
spectively. That is |�i = U�|0i⌦n, | i = U |0i⌦n. The
Hadamard test is an algorithm to estimate the quantum fi-
delity. The circuit of the Hadamard test for two single qubits
|�i and | i is given in Fig. 6 where the qubit on the top is
the auxiliary qubit used for measurement. By the circuit, we
can get output quantum state |⇢i step by step as follows:

Input = |0i|0i⌦n

1�! 1p
2
(|0i+ |1i)|0i⌦n

2�! 1p
2
|0i|�i+ 1p

2
|1i| i

3�! 1

2
|0i(|�i+ | i) + 1

2
|1i(|�i � | i).

(5)

Then, the probability of measuring auxiliary qubit as |0i is:

Pr(0) =
1

4
(h�|+ h |)(|�i+ | i) = 1 + Re(h |�i)

2
. (6)

When all of the amplitudes of |�i and | i are real numbers,
Eq. 6 is reduced to

Pr(0) =
1 + h |�i

2
, (7)

by which we have h�| i = 2Pr(0)� 1. The score of h |�i
can also be estimated by the same circuit but swapping the
positions of the two unitaries U� and U . Thus we can
compute the fidelity by ffid = |h�| i|2 = h�| i · h |�i.

It’s necessary to mention that there are various definitions
and formulations with respect to the fidelity of quantum
states. In some literature, the type of fidelity we take into
account in this paper is referred to as the "Hilbert-Schmidt
distance". Also a number of quantum algorithms have been
proposed to estimate such kind of fidelity, among which
the Hadamard test is very elegant and can be efficiently im-
plemented (i.e., the number of gates does not grow with
the dimension of the Hilbert space in which the data is em-
bedded), and is therefore feasible for near-term quantum
computers.
G.3. Quantum Phase Estimation
Quantum phase estimation (QPE) algorithm, also known
as the quantum eigenvalue estimation algorithm, is the key
component of many quantum algorithms. Suppose a unitary

1 2 3

Controlled Gate

Figure 6. Quantum circuit of the Hadamard test for two quantum
states |�i and | i.

operator U has an eigenvector | i with eigenvalue e2⇡i',
where the value of ' is unknown. The goal of the phase esti-
mation algorithm is to estimate '. As illustrated in Figure 7,
the quantum phase estimation procedure uses two registers.
The first register contains t auxiliary qubits initially in the
state |0i. The value of t should be carefully considered since
it determines the number of digits of accuracy we wish to
have in our estimate for '. The second register begins in
the state | i, and contains as many qubits as is necessary
to store | i. QPE is performed in two stages. The circuit
begins by applying a Hadamard gate to the first register, fol-
lowed by the application of controlled-U operations on the
second register, with U raised to successive powers of two.
The value of ' would be encoded into the amplitudes of
a superposition state in the first register after controlled-U
operations. The second stage of QPE is to apply the inverse
quantum Fourier transform (inverse QFT) on the first register
to change the Fourier basis to the computational basis. The
third and final stage of QPE is to read out the state of the
first register by doing a measurement in the computational
basis. We give the mathematical definition of QPE in Def. 1.
And the following theorem shows that QPE provides a pretty
good estimate of ' with an appropriate number of auxiliary
qubits.

Definition 1 (Quantum Phase Estimation).

|ui|0i⌦t QPE���! 1

2t

2t�1X

x=0

2t�1X

k=0

e�
2⇡ik
2t

(x�2t')|ui|xi (8)

Theorem 4 (Performance of QPE [24]). Suppose a unitary

operator U has an eigenvector |ui with eigenvalue e2i' for

' 2 [0,⇡) with i being the imaginary unit, i.e. we have

U |ui = e2i'|ui. The quantum phase estimation algorithm

can map a state |ui|0i⌦t
to the state |ui|2t'/⇡i such that

|' � '|  ✏ in time O(T (U)
✏ ), where T (U) is the time to

implement U .
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Figure 7. Quantum circuit of Quantum Phase Estimation.

H. Quantum Circuits Construction
H.1. Loading Data onto Quantum Devices by Am-

plitude Encoding
Generating the quantum state with classical information is
the primary task of using quantum computing techniques
to solve classical problems. Since our goal is to do arith-
metic operations w.r.t. estimating the inner product in
quantum devices, we adopt the famous amplitude encod-
ing method, which has been implemented in many quantum
algorithms [12, 13, 16, 27] to transform the classical vector-
like or matrix-like data into their quantum representations.
Now we give the formal definition of the quantum data load-
ing procedure.

Definition 2 (Quantum Data Loading). Given access to
classical data x 2 Rd whose i-th element is written as x[i],
and assume d is a power of 2, there exists a quantum algo-
rithm to generate quantum states of the form

|xi = Ux|0i⌦ log d =
1

||x||

d�1X

i=0

x[i]|ii, (9)

where Ux is a unitary transformation also named as ampli-
tude encoding in some literature. As described in [16], the
complexity to prepare and readout an element scales loga-
rithmically with respect to d.

H.2. Proofs of the 1-to-1 Quantum Inner Product
Theorem

In our model, we treat the process executed on quantum
processors as a dedicated procedure for accelerating the cal-
culation of inner product scores. Remarkably, the quantum
inner product estimation can achieve exponential speedup
and no classical implements can match it as far. Previous
works [2, 19, 33] study the quantum algorithm used to esti-
mate the inner product score given one pair of vectors. After
loading the vectors into two quantum states respectively,
they employ Hadamard test to generate a state containing
the information of the inner product score between such two
states, followed by the QPE used to recover the score in

some computational basis states. We adopt their idea and
name such quantum algorithm as the 1-to-1 QIP, which is
introduced in details as follows.

It is straightforward to achieve the 1-to-1 QIP by the
quantum circuit which is an integration of Hadamard test
and quantum phase estimation. As illustrated in Fig. 8, at
the beginning of the circuit, two classical vectors z and x are
loaded into a quantum state in the input register, and then
transform the inner product into quantum phases through
Hadamard test. Only consider the quantum state in the in-
put register, the transformation is operated step by step as
follows:

Input = |0i|0i⌦k

1�! 1p
2
(|0i+ |1i)|0i⌦k

2�! 1p
2
(|0i|zi+ |1i|0i⌦k)

3�! 1p
2
(|0i|zi+ |1i|xi)

4�! 1

2
|0i(|zi+ |xi) + 1

2
|1i|(|zi � |xi).

(10)

Define the final state of Eq. 10 as |gi and the unitary transfor-
mation that generates such state, i.e. the modified Hadamard
test as Ug . Let |pi and |p̃i be the normalized state of |zi+|xi

2

and |zi�|xi
2 , respectively. Then the quantum state of Eq. 10

is written as

|gi = sin ✓|0i|pi+ cos ✓|1i|p̃i, (11)

where cos ✓ =
q

1�Rehz|xi
2 contains the inner product score.

Thus the inner product between z and x is given by

s = Rehz|xi = 1� 2 cos2 ✓ = � cos 2✓. (12)

The quantum state |gi can be reformulated by applying
Schmidt decomposition:

|gi = �ip
2
(ei✓|w+i � e�i✓|w�i), (13)

where |w±i = 1p
2
(|0i|pi ± i|1i|p̃i) are two orthonormal

quantum states. Then we estimate the phase ✓ through quan-
tum phase estimation. The approximated inner product can
be obtained from the measured output quantum states of the
circuits. Define the unitary operating on the input register

G = Ug(I
⌦(1+k) � 2|0i⌦(1+k)h0|⌦(1+k))U†

g (Z ⌦ I⌦k).
(14)

It can be checked that

G|w±i = e±2i✓|w±i, (15)
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Figure 8. Quantum circuit of the 1-to-1 quantum inner product estimation.

where |w±i are the eigenvectors of G and the corresponding
eigenvalues are e±2i✓. After performing successive expo-
nentialized unitary transformation G2l controlled by the l-th
qubit in output register for l 2 [0, t� 1], the quantum state
of the output register is

1p
2
(ei✓|R+i|w+i � e�i✓|2t�1 �R+i|w�i), (16)

where R+ = r0r1 . . . rt�1 2 [0, 2t�1] (written as the binary
code) for all rl 2 {0, 1}. Since |w±i are two orthonormal
quantum states, we can employ amplitude estimation to make
purification and the purified state is given as ei✓|R+i|w+i.
Finally, the approximation of the phase ✓ can be obtained by
measuring all the qubits of the output register in computa-
tional basis:

✓ = ⇡(r02�1 + r12�2 + · · ·+ rt�12�t) =
⇡R+

2t
. (17)

Thus the inner product score is approximated by

s ⇡ s = � cos
⇡R+

2t�1
. (18)

Note that in practice, the classical data must be normalized
before the quantum data loading procedure to ensure the
unit l2 norm, such that the quantum estimation of the inner
product is hz|xi

||z||||x|| . We assume that the norm of the vectors
is already calculated and stored in classic memory before
loading them onto the quantum device. We can retrieve the
norm and recover the actual inner product hz|xi by scalar
multiplication without additional overheads.

H.2.1 Complexity Analysis
Now we investigate the time complexity of the 1-to-1 QIP
algorithm. The most time-consuming part of the modified

Hadamard test is loading the classical data into their quantum
representation by Ux and Uz both of which cost O(log d)
running time, where d is the feature dimension of x and
z. Such loading procedure is also known as the ampltitude
encoding. General results show that the amplitude encod-
ing can be implemented in O(log nd) running time for n
datapoints either by a dedicated quantum random access
memory (QRAM) data structure [16] or by a parallel unary
loader constructed from parameterized gates [13]. For the
QPE, there have been various improvements [1] which try to
soften the dependence on the inverse QFT, while retaining
the accuracy guarantees offered by the QFT in estimating
the phase value. We conclude that the complexity of inverse
QFT is independent on the feature dimension, such that most
of the time is spent on implementing the gate G which is
equivalent to the unitary Ug multiplied by some element
quantum gates. Thus the most time-consuming part of QPE
is to implement the unitary Ug which costs O( log d

✏ ) time,
where ✏ = |✓ � ✓| is the precision indicating the difference
between the theoretical phase ✓ and the estimated one ✓. For
the final stage and before the measurement, the amplitude
estimation is employed and the time complexity is also loga-
rithmically with respect to d [14]. In conclusion, the overall
running time of the 1-to-1 QIP is O( log d

✏ ).
H.3. Proofs of the 1-to-N Quantum Inner Product

Theorem
We go one step further and demonstrate how quantum par-
allelism can be used to estimate the inner product scores
of a collection of paired embedding vectors, including one
positive pair and several negative pairs. This allows us to
introduce the quantum batch inner product estimation al-
gorithm, which is essential for batch network embedding
training.

For batch training, there are two main problems which can



not be circumvented by the quantum inner product estima-
tion between two vectors without any modification. First, the
vanilla Hadamard test can only be employed to estimate the
fidelity (in this context, equivalent to inner product) between
two quantum states, which is not suitable for both loading a
collection of paired embedding vectors into a superposition
state and evaluating the inner product score of many pairs of
quantum states. Second, the output of the quantum circuit,
i.e., the final quantum state containing the information of
inner product score would be also a superposition state. The
inner product scores stored in the superposition would be
entangled and inseparable. A general way to retrieve the pre-
cise inner product score is quantum tomography [16]. How-
ever, the number of measurements required for the quantum
tomography scales exponentially with respect to the num-
ber of qubits [9], such that the speedup benefited from the
quantum parallelism may be offset. As a result, we suggest
two solutions: the modified Hadamard test and multiple
phase estimation, both of which serve as the foundation for
the quantum batch inner product estimation.

The circuit of the proposed quantum batch inner product
estimation is shown in Fig. 10. There are three quantum
registers initiated by state |0i, from top to bottom are in-
dex register, output register and input register. The index
register has logN qubits where N is the batch size. Each
qubit is transformed via a Hadamard gate and such opera-
tion produces a uniform superposition state 1p

N

PN�1
i=0 |ii.

Each component |ii, that is the computational basis of the
N -dimensional quantum state, is used to turn into an index
aligned with the state containing the information of the inner
product score and control the unitary operation in the other
registers. One of the responsibilities of the input register
is to perform modified Hadamard test. Different from the
vanilla Hadamard test that can only load and estimate the
inner product of two individual vectors, a number of clas-
sical vectors can be loaded and a batch of inner product
scores will be generated into a superposition by the modified
Hadamard test. Then we can retrieve the estimation of the
scores by applying multiple phase estimation in the input
and the output register. Compared to the QPE illustrated in
Fig. 7, the most distinct part of multiple phase estimation
is that N inner product scores are estimated and engraved
at the same time in N mini registers, each of which has t
qubits similar to the QPE. We describe modified Hadamard
test and multiple phase estimation in more detail below.

H.3.1 Modified Hadamard Test
We zoom up the circuit layout of the modified Hadamard test
and exhibit it in Fig 9. The Hadamard test circuit is modified
by encoding a batch of embedding vectors into an entangled
superposition state by introducing a small number of auxil-
iary qubits. There are 1 + k qubits employed to perform the
modified Hadamard test. The amplitude encoding unitary is

1
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a) Quantum circuit of modified Hadamard Test
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Figure 9. a) Quantum circuit of the modified Hadamard test for N
pairs of quantum states. b) It depicts the layout of control operations
which can be interpreted as an indexing procedure determined by
the binary choice of each of the control qubits. c) Simplified symbol
for the multi-qubit controlled gate.

controlled by the 1+ logN auxiliary qubits including all the
qubits in the index register and one qubit in the input register.
Concretely, we define Uxi as the amplitude encoding unitary
that transforms the zero states to the input quantum state by
Uxi |0i⌦k = |xii, where k = dlog de is the minimum num-
ber of qubits needed to load a d-dimensional vector. Thus the
inner product score can be also written as si = hz|xii. The
resulting quantum state includes 2k � d amplitudes that are
redundant and have values of 0. We assume in the remaining
of this papers that d is the power of 2 for simplicity, such that
k = log d and no redundant amplitude exists. Note that Uxi

operates on the last k qubits when the first logN auxiliary
qubits are in the state |ii and the last auxiliary qubit is in the
state |1i. While the amplitude encoding unitary Uz operates
on the last k qubits when the last auxiliary qubit is in the
state |0i regardless of the state of the other qubits. We give
the output quantum state step by step as follows:

Input = |0i⌦ logN |0i|0i⌦k

1�! 1p
N

N�1X

i=0

|ii 1p
2
(|0i+ |1i)|0i⌦k

2�! 1p
N

N�1X

i=0

|ii 1p
2
(|0i|zi+ |1i|0i⌦k)

3�! 1p
2N

N�1X

i=0

(|ii|0i|zi+ |ii|1i|xii)

4�! 1p
N

N�1X

i=0

|ii

1

2
|0i(|zi+ |xii) +

1

2
|1i|(|zi � |xii)

�
.

(19)
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Figure 10. Quantum circuit of the quantum batch inner product estimation.

Let |pii is the normalized states of |zi+|xii
2 , i.e.,

|pii = (
|zi+ |xii

2
)/k |zi+ |xii

2
k2

= (
|zi+ |xii

2
)/

r
1 + Rehz|xii

2

= (
|zi+ |xii

2
)/ sin ✓i,

(20)

where sin ✓i =
q

1+Rehz|xii
2 , thereby

cos ✓i =
q
1� sin2 ✓i =

r
1� Rehz|xii

2
. (21)

The inner product between z and xi can be obtained by:

si = Rehz|xii = 1� 2 cos2 ✓i = � cos 2✓i, (22)

where ✓i 2 [0, ⇡2 ]. In addition, |p̃ii is defined as the normal-
ized states of |zi�|xii

2 , i.e.,

|p̃ii = (
|zi � |xii

2
)/ cos ✓i. (23)

The top 1 + logN qubits of Fig. 9 can be regarded as the
index register, and the other qubits is the value register. With-
out loss of generality, we ignore the index register in the
following analysis for simplicity, and let Ugi be a unified
unitary transformation of the modified Hadamard test in-
dexed by the state |ii, and then the quantum state of the

value register can be written as:

|gii = Ugi |0i⌦(1+k)

=
1

2
|0i(|zi+ |xii) +

1

2
|1i|(|zi � |xii)

= sin ✓i|0i|pii+ cos ✓i|1i|p̃ii.

(24)

Applying the Schmidt decomposition method to the quan-
tum state |gii, the quantum state can be further written as

|gii =
�ip
2
(ei✓i |wi+i � e�i✓i |wi�i), (25)

where |wi±i = 1p
2
(|0i|pii ± i|1i|p̃ii). Now we can think

about the index register again, the overall state is

|hi = 1p
N

N�1X

i=0

|ii(ei✓i |0i⌦Nt|wi+i� e�i✓i |0i⌦Nt|wi�i),

(26)
which is depicted in Fig. 10. So far, we have encoded the
inner product results into a supposition state. The next stage
is retrieving the results from quantum states. Rather than
quantum tomography, we prefer to use QPE to get all of the
inner product results concurrently. However, the applicable
requirements of the QPE are violated by the entangled and
interdependent nature of the superposition. We resort to
the multiple quantum phase estimation introduced in the
following Sec. H.3.2.

H.3.2 Multiple Quantum Phase Estimation
In the last Sec. H.3.1, we have introduced how to encode
the N inner product scores of a batch of vectors into the



quantum state by the modified Hadamard test. Now we
develop a novel quantum algorithm to output these scores in
parallel.

We define the following unitary operating on the input
register:

Gi = Ugi(I
⌦(1+k) � 2|0i⌦(1+k)h0|⌦(1+k))U†

gi(Z ⌦ I⌦k)
(27)

where I denotes the identity operator and Z = |0ih0|�|1ih1|
is the Pauli-Z operator. Applying the unitary operator Gi

defined above to the quantum state |gii, we can get

Gi|wi±i = e±2i✓i |wi±i. (28)

It can be seen that |wi±i are the eigenvectors of Gi and the
corresponding eigenvalues are e±2i✓i .

In the second stage, we use multiple phase estimation
to estimate ✓0, ✓1, . . . , ✓N�1 in parallel. The first register
contains nt auxiliary qubits initially in the state |0i. It can
be seen as a register stacked with N identical mini registers,
each of which has t qubits on which a series of Hadamard
gates and inverse QFT will be operate. The second register is
initiated by state |0i comprised of k + 1 qubits followed by
the Hadamard test Ugi and the resulting quantum state is |gii.
The control gate bGi should be regarded as a composition
of exponentialized controlled gates G2l

i by viewing both
the qubits in the index register and the l-th qubit in the i-
th mini register as the control qubits, where l 2 [0, t � 1].
Consequently, the effect of the multiple phase estimation
is equivalent to take the QPE on the state |gii conditioned
on the index |ii, and the phase estimation result |✓ii will be
encoded in the i-th mini register. By applying multiple phase
estimation on the state |hi given in Eq. 26, and we discard
the other mini registers except for the i-th mini register, the
quantum state of the output register is transformed to

1p
N

N�1X

i=0

|ii(ei✓i |Ri+i|wi+i � e�i✓i |2t�1 �Ri+i|wi�i),

(29)
where Ri+ = r0i r

1
i . . . r

t�1
i 2 [0, 2t�1] (written as

the binary code) for all rji 2 {0, 1}. Now we de-
note the notation U as a unified unitary transformation
to generate the state given in Eq. 29. Then by us-
ing amplitude estimation algorithm [4], we can generate
a state �-close to 1p

N

PN�1
i=0 ei✓i |ii|Ri+i|wi+i in time

O(T (U) ln(1/�)). The output register will output the state
|R0+R1+R2+ . . .R(N�1)+i and the approximation of the
phase ✓i is given by

✓i = ⇡(r0i 2
�1 + r1i 2

�2 + · · ·+ rt�1
i 2�t) =

⇡Ri+

2t
, (30)

which is supposed to be in [0,⇡/2]. The third and final
stage is to read out the state of the output register by doing a

measurement in the computational basis. All of the auxiliary
qubits with respect to the output register of the multiple
QPE will collapse to state |0i or |1i. According to Eq. 22
and Eq. 30, by using t+

⌃
log

�
2 + 1

2✏

�⌥
auxiliary qubits to

implement the inverse QFT, we can recover the inner product
score of each of the node pairs from the measurement results
on the first t qubits:

si ⇡ si = � cos
⇡Ri+

2t�1
. (31)

H.3.3 Complexity Analysis
We now investigate the complexity of the three main stages
of the proposed algorithm. At the first stage where the modi-
fied Hadamard test is applied, the time complexity is highly
dominated by the amplitude encoding procedure, which costs
O(logNd) time. For the second stage when employing mul-
tiple phase estimation, it costs T (G2l

i ) = O(logNd) time to
implement exponentialized controlled gates which is defined
by Eq. 27 where the most time-consuming part is the Ugi

operation. By the Theorem 4, the time complexity of mul-
tiple phase estimation is O( logNd

✏ ) where ✏ is the precision
denoting the difference between the theoretical value and the
estimated value of the phase.
H.4. Proofs of the M-to-N Quantum Inner Product
Proof (A Sketch). The idea is to stack the 1-to-N circuits
in the similar way as by adding an index register marked in
orange, shown as following Eq. 32:

Input = |0i⌦dlogNe|0i⌦dlogMe|0i⌦MNt|0i|0i⌦dlog de

E({xi},{yj})���������!
Hardamard Test

1p
M

M�1X

i=0

M�1O

i=0

|ii
 

1p
N

N�1X

j=0

|ji(ei✓ij |0i⌦MNt|wij+i

� e�i✓ij |0i⌦MNt|wij�i)
!

D({xi},{yj})���������!
QPE

1p
M

M�1X

i=0

M�1O

i=0

|ii
 

1p
N

N�1X

j=0

|ji(ei✓ij |Rij+i|wij+i

� e�i✓ij |Rij+i|wij�i)
!
,

(32)

where |Rij+i is similar to |Ri+i in Theorem 2 and the inner
products can be recovered. ⇤
The detailed proof: Given a bunch of classical vectors
{zi}M�1

i=0 and another bunch of classical vectors {xj}N�1
j=0 ,

where zi 2 Rd and xj 2 Rd. We show that the quantum
algorithm can output the inner product scores sij = z>i xj at
the same time with the complexity O( logMNd

✏ ). The quan-
tum circuit of the M -to-N quantum batch inner product
estimation is given in Fig. 11. Rather than using only one
index register as the 1-to-N QIP does, we use two index reg-
isters in which the qubits serve as index states aligned with
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Figure 11. Quantum circuit of the M -to-N quantum batch inner product estimation.

the states containing the information of the inner product
score and control the unitary operation in the other registers.
Concretely, {zi}M�1

i=0 are indexed by a superposition state
1p
M

PM�1
i=0 |ii in the first index register, while {xj}N�1

j=0

are indexed by another superposition state 1p
N

PN�1
j=0 |ji

in the second index register. Apart from the two index reg-
isters, the other quantum registers can be divided into M
components, each of which is exactly the quantum circuit
excluding the index register of 1-to-N QIP circuit. In other
words, the i-th 1-to-N QIP circuit for i 2 [0,M � 1] is used
to estimate inner product scores between zi and {xj}N�1

j=0 by
using modified Hadamard test and multiple phase estimation.
By performing the modified Hadamard test conditioned on
the two index registers, the transformation of the quantum
state step by step is given as follows:

Input = |0i⌦ logM |0i⌦ logN
�
|0i|0i⌦k

�⌦M

1�! 1p
MN

M�1X

i=0

N�1X

j=0

|iji


1p
2
(|0i+ |1i)|0i⌦k

�⌦M

2�! 1p
MN

M�1X

i=0

N�1X

j=0

M�1O

i=0


1p
2
(|iji|0i|zii+ |iji|1i|0i⌦k)

�

3�! 1p
M

M�1X

i=0

M�1O

i=0

|ii
(

1p
N

N�1X

j=0

|ji
"

1p
2
(|0i|zii+ |1i|xji)

#)

4�! 1p
M

M�1X

i=0

M�1O

i=0

|ii
(

1p
N

N�1X

j=0

|ji
"
1

2
|0i|(|zii+ |xji)

+
1

2
|1i(|zii � |xji)

#)
,

(33)

where |iji is the abbreviation of |ii ⌦ |ji. Notice that the
final quantum state formulated in {· · · } is similar to the

transformed state in Eq. 19. Akin to the method which
has been introduced in Sec. H.3.2, we now implement the
multiple phase estimation to retrieve inner product scores.
The different part is that the number of control qubits of
exponentialized controlled gates is increased (qubits in the
first index register).

In the following we show that how to implement multiple
phase estimation to estimate MN inner product scores. For
convenience, we ignore the two index registers in the follow-
ing analysis and only consider the quantum state of one of
the 1-to-N QIP circuits. Let |piji is the normalized states
of |zii+|xji

2 , and |p̃iji is the normalized states of |zii�|xji
2 .

Let Ugij be a unified unitary transformation of the modified
Hadamard test indexed by the state |iji, and then the quan-
tum state of the value register in the i-th 1-to-N QIP circuit
can be given by:

|giji = Ugij |0i⌦(1+k)

=
1

2
|0i(|zii+ |xji) +

1

2
|1i|(|zii � |xji)

= sin ✓ij |0i|piji+ cos ✓ij |1i|p̃iji.

(34)

This quantum state also can be written as

|giji =
�ip
2
(ei✓ij |wij+i � e�i✓ij |wij�i) (35)

after applying Schmidt decomposition, where |wij±i =
1p
2
(|0i|piji ± i|1i|p̃iji). The value of ✓ij will be approxi-

mated by QIP. Define the following unitary operating on the
input register

G(i)
j = Ugij (I

⌦(1+k)�2|0i⌦(1+k)h0|⌦(1+k))U †
gij (Z⌦I⌦k).

(36)
Next, we define the gate bG(i)

j be a composition of exponen-

tialized controlled gates
⇣
G(i)

j

⌘2l

where l 2 [0, t� 1]. The



three indices indicate that such kind of gates is controlled by
the qubits in the index state |ii in the first register, the index
state |ji in the second register, and the l-th qubit in the j-th
mini register of the i-th 1-to-N QIP circuit .

Reconsider the state in the index registers, the quantum
state of the i-th 1-to-N QIP circuit after performing multiple
phase estimation is written as

|ii⌦ 1p
N

N�1X

j=0

|ji(ei✓ij |Rij+i|wij+i�e�i✓ij |2t�1�Rij+i|wij�i),

(37)
where Rij = r0ijr

1
ij . . . r

t�1
ij 2 [0, 2t�1] for all rlij 2 {0, 1}.

Such quantum state is purified by amplitude estimation and
the state is transformed to

|ii ⌦ 1p
N

N�1X

j=0

ei✓ij |ji|Rij+i|wij+i, (38)

where |Rij+i is an approximation of |Rij+i. The output reg-
ister will output the state |Ri0+Ri1+Ri2+ . . .Ri(N�1)+i
and the approximation of the phase ✓ij can be retrieved by
measuring the output register in computational basis:

✓ij = ⇡(r0ij2
�1+r1ij2

�2+· · ·+rt�1
ij 2�t) =

⇡Rij+

2t
, (39)

which is supposed to be in [0,⇡/2]. Finally, we can re-
cover the MN inner product scores between {zi}M�1

i=0 and
{xj}N�1

j=0 from the measurement results on the first t qubits
in every 1-to-N QIP circuit:

sij ⇡ sij = � cos
⇡Rij+

2t�1
. (40)

H.4.1 Complexity Analysis
Here we theoretically analyze the complexity of the M -to-N
quantum inner product algorithm. Retrospecting the circuit
of 1-to-N quantum inner product in Fig. 10 and the circuit of
M -to-N QIP in Fig. 11, the M -to-N quantum inner product
can be viewed as stacking M 1-to-N QIP. In other words, the
i-th (i 2 [0,M � 1]) stacked 1-to-N QIP is used to encode
the inner product scores between vector zi and {xj}N�1

j=0
into an entangled state, and decode the scores by multiple
phase estimation. For the modified Hadamard test which
loading the inner product scores into an entangled state, it
costs O(logMNd) time to encode MN vectors by ampli-
tude encoding. For the multiple phase estimation, the time
complexity of each stacked 1-to-N QIP is O( logNd+logM

✏ )
where O(logM) is the additional time for conducting uni-
tary controlled by the logM qubits in the first index register,
and ✏ is the precision parameter. Given that our quantum
algorithm is designed to estimate the MN inner product
scores in parallel, the time complexity of implementing the
M -to-N QIP is O( logMNd

✏ ).

import torch, torch_qip
from torch.autograd.function import Function

class QIPMatMul(Function):
@staticmethod
def forward(ctx, input, weight, num_qubits,

sample_times, out_strategy):
ctx.save_for_backward(input, weight)
output = input.mm(weight)
output = torch_qip.qip(output, num_qubits,

sample_times, out_strategy)
return output

@staticmethod
def backward(ctx, grad_output):

input, weight = ctx.saved_tensors
grad_input = grad_weight = None
if ctx.needs_input_grad[0]:

grad_input = grad_output.mm(weight.t())
if ctx.needs_input_grad[1]:

grad_weight = input.t().mm(grad_output)
return grad_input, grad_weight, None, None, None

Figure 12. An example of the code for differentiable quantum
matrix multiplication operator based on torch_qip.

Table 9. The base implementation of machine learning models.
Model Implementation

ProjUNN [17] https://github.com/facebookresearch/projUNN. The reposi-
tory includes implementations of ProjUNN on several ML
models. The optimizer with two variants ProjUNN-D and
ProjUNN-T for mapping matrices to unitaries is the key tech-
nique where QIP can be introduced.

node2vec [11] https://github.com/xgfs/node2vec-c. The repository contains
the C++ implementation of node2vec. In the embedding
training, the computation of loss is mainly composed of inner
product calculations.

K-Means Implemented by the authors with numpy.

I. Enable Automatic Differentiation for QIP in
Pytorch

We give the example of enabling automatic differentiation
for QIP in deep learning in Fig. 12.

J. Experimental Details
In our numerical experiments, we substitute the classical in-
ner product computations with the developed QIP operators.
The base implementations of the including ML models and
brief introductions are listed in Table 9.

J.1. Accuracy Study
Metrics. The used metrics mean squared error (MSE) and
mean absolute error (MAE) are defined as follows:

MSE =
1

|D|

|D|X

i=1

⇣
(x,y)i � (̂x,y)i

⌘2

,

MAE =
1

|D|

|D|X

i=1

���(x,y)i � (̂x,y)i

��� ,

(41)

where D is the dataset, i is the index of inner product (x,y)
in D.
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Figure 13. The MLP model for image classification on MNIST.

J.2. Training Unitary Neural Networks
Approach and Model Architecture. Considering that mul-
tiplying of a unitary matrix and a normalized vector can be
achieved by QIP circuits without further normalization, we
embed the unitary layer proposed in ProjUNN [17] in a typi-
cal multi-layer perceptron (MLP) model, as shown in Fig. 13.
The input is a figure in array of size (28 ⇤ 28, ). Among the
layers the second one adopts LeakyRelu to avoid an all-zero
output; the third layer, an l2-normalization layer, is adopted
to normalize input vectors to length 1, for quantum state
preparation; and the fourth layer is the unitary mapping. The
output is the scores of different classes which is an array of
size (10, ).

Dataset. MNIST is a dataset of handwritten digits, each
has 28x28 pixels. It contains 60,000 training images and
10,000 testing images.
J.3. Embedding Learning by node2vec
J.3.1 Approach of Node2vec
Biased Random Walk. We define a network G = (V, E)
by node set V and edge set E ✓ V ⇥ V . First, node2vec
defines a biased random walk method to generate random
walk sequences by a combination of BFS and DFS. The
second-order transition weight is defined as:

↵pq(t, x) =

8
>>><

>>>:

1/p dtx = 0

1 dtx = 1

1/q dtx = 2

0 otherwise

, (42)

where ↵pq is the transition weight from node x to t, p and q
are two parameters controlling the BFS/DFS preference, dtx
is the distance of the two nodes. According to the transition
weight, a random walk sequence can be obtained by starting
from an arbitrary node and walk for a certain number of
steps.

Objective of Negative Sampling. For each node i in
the sequence, we define i as the ‘context’ node, and nodes
that appear within a slide window is called ‘content’ nodes.
For such a pair of context node i and content node j, the
objective based on negative sampling is defined as:

log �(x>
i hj) +

BX

b=1

Ej0⇠Pneg(·) log �(�x>
i hj0), (43)

where xi is the context embedding of node i and hj is the
content embedding of node j, �(·) is the sigmoid function,
Pneg is the distribution of negative samples (usually empiri-
cally set proportional to node degrees), and B is the number
of negative samples for each positive sample.

So far, we can see that the main component of the com-
putation of the objective Eq. 43 is the computation of inner
products, which can be solved by our 1-to-many QIP circuit.

J.3.2 Experimental Setting
Parameter settings. We set the embedding dimension as
128, p = 1, q = 1 for the biased random walk, the number of
negative samples for each positive sample as 5, and perform
80 times of random walk for each nodes with window size
10.

Datasets. BlogCatalog [30] is a social network of 10,312
bloggers who have social connections with each other. There
are 39 different labels of the nodes; PPI [5] is a subgraph of
the PPI network for Homo Sapiens which has 3890 nodes.
There are 50 different labels of the nodes.

J.4. K-Means Clustering
Approach. K-Means is an unsupervised clustering algo-
rithm, which has the following four steps: 1) Randomly ini-
tialize centroids, 2) calculate pairwise Euclidean distances
between the data points, 3) find the closest centroid to a
given data point, 4) create clusters, and 5) update the cen-
troids as the means of each cluster. The algorithm repeats
step 2) to step 5) until convergence or reaching maximum
iterations. In the step 2), the Euclidean distance computation
is time-consuming and will be intractable for a big dataset.
It is also where the QIP operators be adopted. Considering
two data points xi and xi, the Euclidean distance can be
obtained by several inner product terms:

kxi � xjk2 =
⇣
hxi,xii+ hx,xji � 2hxi,xji

⌘1/2
. (44)

In this way, we use inner product operators to compute the
Euclidean distance of data points, whose complexity only
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Figure 14. (Full version) Node classification on PPI and BlogCatalog.

depends on the complexity of inner products hence QIP
works.

Metrics. The metrics, rand index (RI), normalized mutual
information (NMI), and adjusted mutual information (AMI)
are used to measure the similarity of two data clusterings.

By regarding the clustering problem as classification prob-
lem, RI can be defined as follows:

RI :=
TP + TN

TP + FP + TN + FN
, (45)

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and
FN is the number of false negatives.

Given the clustering results X and ground-truth clustering
Y , NMI is defined as follows:

NMI :=
2I(X;Y )

H(X) +H(Y )
, (46)

where I(·; ·) is the mutual information, and H(·) represents
marginal entropy. Then, AMI is defined as follows:

AMI :=
I(X;Y )� E(I(X;Y ))

1
2 (H(X) +H(Y ))� E(I(X;Y ))

. (47)

K. Additional Experiments
K.1. Training Unitary Neural Networks by

ProjUNN-T
We use ProjUNN-T [17] to optimize the untary layer. The
model convergence curve is plotted in Fig. 15 and the test
accuracy after 20 epochs of training is given in Table 10.
We find that under ProjUNN-T, the performance of classical
method keeps outperforming QIP-based methods on both
model convergence speed and test accuracy, which is slightly
different from the results of ProjUNN-D where QIP-based
methods have chance to outperform the classical method.
It indicates that, developing a effective optimizer for the
normalized vectors or unitary matrices is also very important
for QIP-based ML models.
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Figure 15. Convergence of using ProjUNN-T.

Table 10. Test precision of adopting ProjUNN-T on MNIST.

Accuracy (%)

Q-4-Avg 94.76
Q-4-Mode 93.26
Q-6-Avg 95.40
Q-6-Mode 95.65
Q-8-Avg 95.99
Q-8-Mode 95.55
classical 96.18
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