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1. Proof of the Propositions
1.1. Proof of the Proposition 1 (Range-Preserving Alignment)

Consider a classifier T which predicts p̂ ∈ Rd with a mapping function GT :

p̂T = Softmax(GT (f)), (1)

p̂T then distills hierarchical information of p̂h, which typically adopts a Kullback–Leibler divergence loss between softmax
normalized logits p̂T and p̂h [2, 5]. However, p̂Ti ∈ RCH and p̂hi ∈ RCh have different resolutions, an alignment process is
required before hierarchical distillation.

p̈T,h[j] = max
k=1,...,CH

Th,H [j, k]× p̂T [k]. (2)

where “max” denotes compute the maximum value, and then ṗT,h is normalized to get pT,h ∈ RCh

pT,h[j] =
p̈T,h[j]∑Ch

l=1 p̈
T,h[l]

. (3)

After aligning p̂T and p̂h, we can apply the Kullback–Leibler (KL) divergence between p̂hi and pT,h
i as the hierarchical

distillation loss functions Lh
hd as

Lh
hd = KL{p̂h||pT,h}, (4)

and the overall hierarchical distillation loss is

Lhd =

H∑
h=1

Lh
hd. (5)

Proposition 1 (Range-Preserving Alignment). Let v=argmaxjp
T,h[j], u=argmaxkp̂

T [k]. If pT,h is computed by eqs. (2)
and (3), then Th,H [v, u] = 1, which indicates the class predicted by p̂T is within the range of that predicted by pT,h.

Proof: Let v
′

denotes the corresponding coarse class of u, which means

Th,H [v
′
, u] = 1 (6)

i) Proving p̈T,h[v
′
] ≥ p̈T,h[v]

Considering that Class transition matrix Th,H [j, k] can be 0 or 1, we have

max
k=1,...,CH ;Th,H [j,k]=1

Th,H [j, k]× p̂T [k] ≥ 0, (7)

max
k=1,...,CH ;Th,H [j,k]=0

Th,H [j, k]× p̂T [k] = 0. (8)
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Combining eqs. (2), (7) and eq. (8),

p̈T,h[j] = max
k=1,...,CH

Th,H [j, k]× p̂T [k]

= max
k=1,...,CH ;Th,H [j,k]=1

p̂T [k].
(9)

Choosing j = v
′

in eq. (9) and combining eq. (6),

p̈T,h[v
′
] = max

k=1,...,CH ;Th,H [v′ ,k]=1
p̂T [k] ≥ p̂T [u]. (10)

Since u = argmaxkp̂
T [k], we can derive eq. (11) as:

p̈T,h[v
′
] = p̂T [u] = max

k=1,...,CH

p̂T [k]. (11)

Choosing j = v in eq. (12)

p̈T,h[v] = max
k=1,...,CH ;Th,H [v,k]=1

p̂T [k] ≤ p̂T [u]. (12)

From eqs. (11) and (12), we get the results of part i):

p̈T,h[v
′
] = p̂T [u] ≥ p̈T,h[v]. (13)

ii) Proving p̈T,h[v
′
] ≤ p̈T,h[v]

Since v = argmaxjp
T,h[j], we have

pT,h[v
′
] ≤ pT,h[v]. (14)

Multiplying
∑Ch

l=1 p̈
T,h[l] in both sides of eq. (15), we can reach the conclusion:

p̈T,h[v
′
] ≤ p̈T,h[v]. (15)

Combining i) and ii), we have:
p̈T,h[v

′
] = p̈T,h[v]. (16)

There are two situations for eq. (16):
• p̈T,h has single maximum value, and thus v = v

′
. From eq. (6), we can get Th,H [v, u] = Th,H [v

′
, u] = 1;

• p̈T,h has multiple maximum values, and thus there exist v
′

satisfying Th,H [v
′
, u] = 1 and p̈T,h[v

′
] = p̈T,h[v] = maxj p̈

T,h[j].
Proof ends.

1.2. Proof of the Proposition 3 (Comparison of Error Bounds)

We provide a theoretical analysis of a simple case with hierarchical classifiers G1 and G2. Specifically, classifier G1 has C1

balanced classes, with n1,i =
N
C1

samples for i-th class ; G2 has C2 = 2C1 classes, with n2,j samples for j-th class. Note
that i-th class of G1 correspond to (2i− 1)-th and 2i-th classes in G2.

Definition 1. Following [3], the margin of i-th class of Gh is defined as γh
i = minyh=i maxl ̸=y p̂

h[yh]− p̂h[l], where yh is
the ground-truth for Gh.

Definition 2. Let Pr(ŷh = j|yh = i) denote the probability of i-th class in h-th classifier being mis-classified as j-th class
by Gh. The classification error of Gh on the i-th class is defined as Lh

i =
∑

j ̸=i Pr(ŷh = j|yh = i). The transformed

classification error of Gh+1 on the i-th class of Gh is defined as L(h+1)→h
i =

∑
j ̸=2i−1,2i Pr(ŷh+1 = j|yh = i).

Proposition 2 (Generalization Error Bound [3]). With probability 1− 1
N5 , Lh

i is upper bounded by ∆h
i :

Lh
i ≲ ∆h

i =
1

γh
i

√
C(Gh)

nh,i
+

log(N)
√
nh,i

, (17)

where C(Gh) is some proper complexity measure of function Gh, such as [1, 6], and we use ≲ to hide some constant factors.



Proposition 3 (Comparison of Error Bounds). Suppose the error of classifiers is uniformly distributed, with probability
1− 1

N5 , for i = 1, ..., C1,

L2→1
i ≲ ∆2→1

i = (1− 1

C2 − 1
)(∆2

2i−1 +∆2
2i) (18)

∆2→1
i

∆1
i

> ω · ηi > 1, (19)

∆2
2i−1 +∆2

2i

∆1
i

> ηi > 1, (20)

where ηi =
√
1 + ri +

√
1 + 1

ri
, ri =

n2,2i−1

n2,2i
and ω = 1− 1

C2−1 .

Proof: According to Prop. 2, L1
i and L2

j have bounds as:

L1
i ≲ ∆1

i =
1

γ1
i

√
C(G1)

n1,i
+

log(N)
√
n1,i

, (i = 1, ..., C1); (21)

L2
j ≲ ∆2

j =
1

γ2
j

√
C(G2)

n2,j
+

log(N)
√
n2,j

, (j = 1, ..., C2); (22)

The error of classifiers is uniformly distributed means that for j ̸= i, j = 1, ..., Ch,

Pr(ŷh = j|yh = i) =
1− Pr(ŷh = i|yh = i)

Ch − 1
, (23)

As per definition 2 and eq. (23),

L2→1
i =

∑
j ̸=2i−1,2i

Pr(ŷ2 = j|y1 = i)

=
∑

j ̸=2i−1,2i

Pr(ŷ2 = j|y2 = 2i− 1) +
∑

j ̸=2i−1,2i

Pr(ŷ2 = j|y2 = 2i)

= L2
2i−1 − Pr(ŷ2 = 2i|y2 = 2i− 1) + L2

2i − Pr(ŷ2 = 2i− 1|y2 = 2i)

= (1− 1

C2 − 1
)L2

2i−1 + (1− 1

C2 − 1
)L2

2i,

(24)

Substitute eq. (22) into eq. (24),

∆2→1
i = (1− 1

C2 − 1
)(∆2

2i−1 +∆2
2i)

= (1− 1

C2 − 1
)(

1

γ2
2i−1

√
C(G2)

n2,2i−1
+

log(N)
√
n2,2i−1

+
1

γ2
2i

√
C(G2)

n2,2i
+

log(N)
√
n2,2i

)

> (1− 1

C2 − 1
)(

1

γ1
i

√
C(G2)

n2,2i−1
+

log(N)
√
n2,2i−1

+
1

γ1
i

√
C(G2)

n2,2i
+

log(N)
√
n2,2i

)

> (1− 1

C2 − 1
)(

1

γ1
i

√
C(G1)

n2,2i−1
+

log(N)
√
n2,2i−1

+
1

γ1
i

√
C(G1)

n2,2i
+

log(N)
√
n2,2i

)

= (1− 1

C2 − 1
)(

1

γ1
i

√
C(G1) + log(N))(

1
√
n2,2i−1

+
1

√
n2,2i

)

= (1− 1

C2 − 1
)(

1

γ1
i

√
C(G1)

n1,i
+

log(N)
√
n1,i

)(
√
1 + ri +

√
1 +

1

ri
)

= (1− 1

C2 − 1
)∆1

i (
√
1 + ri +

√
1 +

1

ri
),

(25)



From eq. (25), we have:

∆2→1
i > (1− 1

C2 − 1
)(
√
1 + ri +

√
1 +

1

ri
)∆1

i , (26)

and

∆2→1
i

∆1
i

> (1− 1

C2 − 1
)(
√
1 + ri +

√
1 +

1

ri
)

≥ (1− 1

C2 − 1
)(
√
1 + 1 +

√
1 +

1

1
)

≥ (1− 1

4− 1
)(
√
1 + 1 +

√
1 +

1

1
)

=
4
√
2

3
> 1,

(27)

Using the same derivation as eq. (24) and (25), we have

∆2
2i−1 +∆2

2i

∆1
i

> (
√
1 + ri +

√
1 +

1

ri
) ≥ 2

√
2 > 1. (28)

Proof ends.

1.3. Proof of the Proposition 4 (MAE of HCA)

From the hierarchical predictions p̂h, we can estimate an adjusted prediction through a summation operation

p̂a = p̂H +

H−1∑
h=1

TT
h,H · p̂h, (29)

or a multiplication operation:

p̂m = log(p̂H) +

H−1∑
h=1

TT
h,H · log(p̂h). (30)

Proposition 4 (MAE of HCA). Let E2 and EHCA denote the mean absolute error (MAE) of G2 and HCA (by eq. (29) or
(30)). Suppose the error of classifiers is uniformly distributed, we have

E2 ≲ U2 =

C2∑
i=1

C2∑
j=1

|j − i| · ∆2
i

C2 − 1
, (31)

EHCA ≲ UHCA =

C2∑
i=1

{νi − ρi +

C2∑
j=1

|j − i| · ρi}, (32)

U2 − UHCA ∝
C1∑
i=1

(∆2
2i−1 +∆2

2i − 2∆1
i ) > 0, (33)

∆2
2i−1 +∆2

2i

2∆1
i

>
ηi
2

≥
√
2, (34)

where ηi =
√
1 + ri +

√
1 + 1

ri
, ri =

n2,2i−1

n2,2i
, ρi = 1−µi−νi

C2−2 ,µi = (1 − C1−2
C1−1∆

1
i ) · α

α+β , νi = (1 − C1−2
C1−1∆

1
i ) ·

β
α+β ,

αi = (1−∆2
i ) and βi =

∆2
i

C2−1 .



Proof: Let e2,i,ea,i denotes the mean absolute error (MAE) of i-th class samples predicted by p̂2 and p̂a (or p̂m), respectively.
We can compute e2,i and ea,i from classification errors as:

e2,i =

C2∑
j=1

|j − i| · Pr(ŷ2 = j|y2 = i), (35)

and

ea,i =

C2∑
j=1

|j − i| · Pr(ŷa = j|y2 = i), (36)

where Pr(ŷ2 = j|y2 = i) denotes the probability of i-th class in classifier G2 being mis-classified as j-th class by p̂2, and
Pr(ŷa = j|y2 = i) denotes the probability of i-th class in classifier G2 being mis-classified as j-th class by p̂a.

We analyze the case that i is an odd number using the Prop. 2 (the analysis is the same when i is an even number).
According to eq (35), (22) and (23),

e2,i =

C2∑
j=1

|j − i| · Pr(ŷ2 = j|y2 = i)

=

C1∑
k=1

|2k − 1− i| · Pr(ŷ2 = 2k − 1|y2 = i) + |2k − i| · Pr(ŷ2 = 2k|y2 = i)

≲ 0 ∗ (1−∆2
i ) + 1 ∗ ∆2

i

C2 − 1
+

C1∑
k=1,k ̸= 2i+1

2

(|2k − 1− i|+ |2k − i|) · ∆2
i

C2 − 1

= 0 ∗ αi + 1 ∗ βi +

C1∑
k=1,k ̸= 2i+1

2

(|2k − 1− i|+ |2k − i|) · 1− αi − βi

C2 − 2

∆
= u2,i

=

C2∑
j=1

|j − i| · ∆2
i

C2 − 1
,

(37)

where αi = (1−∆2
i ), βi =

∆2
i

C2−1 .

ea,i =

C2∑
j=1

|j − i| · Pr(ŷa = j|y2 = i)

=

C1∑
k=1

|2k − 1− i| · Pr(ŷa = 2k − 1|y2 = i) + |2k − i| · Pr(ŷa = 2k|y2 = i)

=

C1∑
k=1

Pr(ŷ1 = k|y1 =
i+ 1

2
) · {|2k − 1− i| · Pr(ŷ2 = 2k − 1|ŷ2 = 2k − 1, 2k) + |2k − i| · Pr(ŷ2 = 2k|ŷ2 = 2k − 1, 2k)}

≲ 0 ∗ µi + 1 ∗ νi +
C1∑

k=1,k ̸= 2i+1
2

(|2k − 1− i|+ |2k − i|) · 1− µi − νi
C2 − 2

∆
= ua,i

= νi −
1− µi − νi
C2 − 2

+

C2∑
j=1

|j − i| · 1− µi − νi
C2 − 2

,

(38)

where µi = (1−∆1
⌈i/2⌉) ·

α
α+β and νi = (1−∆1

⌈i/2⌉) ·
β

α+β . “⌈x⌉” denotes rounding up to the nearest integer greater than
or equal to x. According to Prop. 3, we have:

αi < µi, βi < νi, (39)



Combing eq. (37)∼(39), it can be derived that
ua,i < u2,i, (40)

Finally, the overall MAE E2 and Ea for p̂2 and p̂a can be computed as:

E2 =

C2∑
i=1

e2,i <

C2∑
i=1

u2,i =

C2∑
i=1

C2∑
j=1

|j − i| · ∆2
i

C2 − 1

∆
= U2, (41)

and

Ea =

C2∑
i=1

ea,i <

C2∑
i=1

ua,i =

C2∑
i=1

{νi −
1− µi − νi
C2 − 2

+

C2∑
j=1

|j − i| · 1− µi − νi
C2 − 2

} ∆
= UHCA. (42)

Combining eq. (40)∼(42), it can be derived that

U2 − UHCA ∝
C1∑
i=1

(∆2
2i−1 +∆2

2i−1 −∆1
i ) > 0, (43)

where “∝” denotes being propositional to. Eq. (34) has already been proved in eq. (28).
Proof ends.
Remarks on Data Sufficiency: i) When the data is sufficient (nh,i → ∞), the upper bounds ∆h

i for a given classifier, as
given in Eq. (17) approaches zero. Therefore, each of the ∆h

i terms on the RHS of Eq. (33) will progressively shrink, i.e.
(∆2

2i−1 +∆2
2i)− 2∆1

i becomes smaller, resulting in a limited gap between U2 and UHCA (eq. (33)).
ii) The converse is true for ∆h

i when the data is limited and the gap between U2 and UHCA will become more prominent,
as eq. (34) suggests that RHS of eq. (33) is larger than

∑C1

i=1 2(
√
2 − 1)∆1

i . Moreover, as per eq. (33) and (34), the more
imbalanced the data (the larger ri), the larger the difference between U2 and UHCA.

2. Experiment and Discussion
2.1. More Ablation Studies

IMDB-WIKI-DIR [23] and SHTech Part A (SHA) [24] data are chosen for ablation studies. Mean absolute error (MAE) and
its balanced version bMAE [13] are adopted as evaluation metrics for SHA and IMDB-WIKI-DIR, respectively. Lower MAE
and bMAE denote better performance.
i) Influence of Class Number CH In [21], CH is chosen as 100. We further explored the influence of larger CH in the SHA
dataset. Specifically, 1 ∼ (H − 1)-th classifiers are kept the same while the class number of H-th classifier is increased.
Fig. 1 visualize the results of various CH ranging from 100 to 3200. As shown in Fig. 1, increasing CH will increase the
MAE of a single classifier due to the fewer sample per class, which is consistent with the results in [21]. Moreover, HCA
shows consistent improvement over all the CH , especially when CH ≥ 1600.

Figure 1. Comparison of varing class numbers CH of H-th classfiers.



ii) Settings of Classifiers For classifier Gh (h = 1, ...,H), we adopt a single linear layer, which maps features f ∈ Rd to
outputs p̂H ∈ RCh For classifiers GT , we investigate linear and non-linear settings. In the linear setting, one fully connected
layer (1-fc) is adopted, which maps features f ∈ Rd to outputs p̂T ∈ RCH . For the non-linear setting, two fully connected
layers (2-fc) with feature dimensions d

4 and CH are adopted, and softplus is adopted as the activation function. Table 1
presents the quantitative results. It can be observed that: i) both of the 1-fc and 2-fc GT s show significant improvement
compared to the (1-fc and 2-fc) vanilla classifiers; ii) 2-fc GT shows slightly better performance than adopting 1-fc GT ,
suggesting a linear GT is not adequate for distilling hierarchical information from classifiers Gh (h = 1, ...,H); iii) the
vanilla classifiers have the same class-splitting as classifier GT , but 2-fc CLS does not show significant improvement to 1-fc
CLS.

Gh GT
IMDB-WIKI-DIR

SHA
All Many Med. Few

CLS 1-fc 13.58 7.13 13.95 33.21 58.2
CLS 2-fc 13.51 7.43 13.95 31.97 58.1

HCA-d 1-fc 1-fc 13.06 7.00 13.17 31.72 54.5
HCA-d 1-fc 2-fc 12.70 7.00 13.18 29.94 53.7

Table 1. Comparing settings of Classifiers.

iii) One-hot or Gaussian-smoothed ground-truth labels One-hot and Gaussian-smoothed [4] ground truths ph are two
common choices for cross-entropy losses. Compared to one-hot ph, Gaussian-smoothed ground truths further encode the
ordinal relationship among labels. We compare both of them in Table 2. From Table 2, we can observe that HCA shows
improvements with both hard and soft ground truths, and HCA with soft ground truths delivers better performance. We use
soft labels by default in all of the remaining experiments.

Method GT
IMDB-WIKI-DIR

SHA
All Many Med. Few

CLS
one-hot

13.48 7.25 13.65 32.57 58.8
HCA-d 12.93 7.20 12.81 30.71 55.0

CLS
soft [4]

13.58 7.13 13.95 33.21 58.2
HCA-d 12.70 7.00 13.18 29.94 53.7

Table 2. Soft vs. hard one-hot ground truth of classification.

iv) Can HCA be a regularizer to regression? We combine HCA and regression in a single network to see the combination
effect of them. Results are shown in Table 3. Training HCA and regression together will improve the regression performance
(MAE from 65.4 to 58.7). However, the performance of HCA will be harmed by regression (MAE from 53.7 to 58.6),
implying that learning imbalanced regression targets together is harmful to HCA.
v) Imbalanced Ratios We do ablation studies on imbalanced ratios in Table 4. It can be observed that HCA outperforms both
regression and vanilla classification in all imbalance ratios. The larger the imbalance ratio r, the greater the improvement from
vanilla classification to HCA. Theoretically, as indicated in eq.16&17, an increasing r leads to larger ηi, thereby amplifying
the improvement from vanilla classification to HCA.

HCA or Regression HCA+Regression
MAE↓ RMSE↓ MAE↓ RMSE↓

Regression 65.4 103.3 58.7 101.8
HCA-d 53.7 87.8 58.6 100.4

Table 3. Comparison on SHTech dataset Part A (SHA) [24]. (Left) Training HCA or Regression with L1 loss separately. (Right) Training
HCA and Regression together in a network.

2.2. Comparison with SOTA on Regression Tasks

SHTech Dataset SHTech [24] is a crowd-counting dataset, which presents severe imbalanced distribution [9, 21, 22]. It has
two subsets, part A and part B. Part A presents crowded scenes captured in arbitrary camera views, while part B presents



Configuration
r = 19 r = 49 r = 99

1900:100 1960:40 1980:20
Regression 6.78±0.04 8.07±0.07 8.07±0.13

CLS 6.78±0.03 7.64±0.13 7.65±0.08
HCA-d 6.72±0.04 7.57±0.01 7.54±0.04

Table 4. Comparison on subsampled subsets of IMDB-WIKI-DIR [23] with different imbalanced ratios. The sample number of each subset
is the same. “n1 : n2” denotes the sample number of the major and the minor classes, and “r” denotes the imbalance ratio.

relatively sparse scenes captured by surveillance cameras. We follow the same network setting as [21], where 100 logarithm
classes are adopted for CH . Mean absolute error (MAE) and rooted mean square error are adopted as evaluation metrics. Both
MAE and RMSE are the lower, the better. Quantitative results are presented in Table 5. It can be observed that Hierarchical
classification shows the best performance and improves plain classification by a large margin.

SHA SHB
MAE↓ RMSE↓ MAE↓ RMSE↓

CSRNet [8] 68.2 115.0 10.6 16.0
DRCN [16] 64.0 98.4 8.5 14.4
BL [10] 62.8 101.8 7.7 12.7
PaDNet [17] 59.2 98.1 8.1 12.2
MNA [18] 61.9 99.6 7.4 11.3
OT [20] 59.7 95.7 7.4 11.8
GL [19] 61.3 95.4 7.3 11.7
Regression [21] 65.4 103.3 10.7 19.5
DC-regression [21] 60.7 101.0 7.1 11.0
CLS 58.2 96.7 7.0 11.8
HCA-add 55.9 92.8 6.7 11.4
HCA-mul 54.7 91.6 6.8 11.4
HCA-d 53.7 87.8 6.8 11.8

Table 5. Comparison on SHTech dataset [24]. Methods are grouped as density map regression, local count regression and classification
approaches.

IMDB-WIKI-DIR Dataset IMDB-WIKI-DIR [23] is a large age estimation dataset, which is an imbalanced subset sampled
from IMDB-WIKI [14]. There are 191509 training samples, 11022 validation samples, and 11022 testing samples. Table 6
presents the quantitative results. It can be observed that hierarchical classification shows the best result on the whole range
of the target space. We choose three baselines of classification, they are: i) vanilla classification, which is H-th classifier of
HCA; ii) classification with label distribution smoothing (LDS) [23], which re-weight samples with inverse class frequency;
iii) classification with label distribution smoothing (LDS) and ranksim [7] regularization, ranksim [7] regularizes feature
space to have the same ordering as label space. Their HCA counterparts are also included.

From the results in Table 6, we can observe that: i) HCA shows clear improvement in bMAE over naive classification
baselines. Specifically, HCA-d can improve all the shots for “CLS” and “CLS+LDS” baselines, while for strong baseline
“CLS+LDS+ranksim”, since the baseline results are already saturated for the many-shot, there is still a slight trade-off
between many and few-shot (many-shot bMAE increases from 6.70 to 6.88). ii) HCA outperforms its regression baselines
and other regression approaches. Noted that Balanced MSE [13] is a logit adjustment version for regression, it improves
the few/medium-shot performances via significantly harming the many-shot (bMAE from 7.32 to 7.56), while for HCA-d,
many-shot performance is roughly maintained or improved.
AgeDB-DIR Dataset AgeDB-DIR [23] is an imbalanced re-sampled version of AgeDB dataset [12]. It contains 12208
training samples, 2140 validation samples and 2140 testing samples, with ages ranging from 0 to 101. Table 7 presents the
quantitative results. HCA approaches show consistent improvement over classification baselines and outperform regression
approaches.
NYUDv2-DIR Dataset NYUDv2-DIR [23] is an imbalanced version sampled from the NYU Depth Dataset V2 [15]. The
depth values range from 0 to 10 meters, which are divided into 100 logarithm classes for CH . Mean absolute error (MAE),
rooted mean square error (RMSE), relative absolute error (RelAbs), δ1, δ2 and δ3 are adopted as evaluation metrics. Noted
that all classes in NYUDv2-DIR have more than 107 samples, which should be all categorized as many-shot classes according



Methods
bMAE↓ MAE↓

All Many Med. Few All Many Med. Few
Regression [23] 13.92 7.32 15.93 32.78 8.06 7.23 15.12 26.33

Regression+LDS [23] 13.37 7.55 13.96 30.92 8.11 7.47 13.41 23.50
Regression+LDS +ranksim [7] 12.83 7.00 13.28 30.51 7.56 6.94 12.61 23.43
Regression+FDS +ranksim [7] 12.39 6.91 12.82 29.01 7.35 6.81 11.50 22.75

Balanced MSE [13] 12.66 7.65 12.68 28.14 8.12 7.58 12.27 23.05
DC-regression [21] 14.18 7.30 16.04 34.00 8.05 7.18 15.40 26.48

DC-regression+LDS [21] 13.04 8.11 13.62 27.82 8.62 8.04 13.50 22.04
CLS 13.58 7.13 13.95 33.21 7.75 7.04 13.60 25.17

CLS+LA [11] 13.04 7.82 11.89 30.10 8.22 7.75 11.75 22.40
HCA-add 12.86 6.98 13.15 30.80 7.53 6.90 12.70 23.53
HCA-mul 12.89 7.00 13.36 30.74 7.57 6.92 12.91 23.52

HCA-d 12.70 7.00 13.18 29.94 7.54 6.91 12.69 22.96
CLS+LDS 12.85 7.31 13.40 29.54 7.84 7.25 12.53 23.56

HCA-add+LDS 12.64 7.15 12.83 29.47 7.66 7.09 12.20 23.31
HCA-mul+LDS 12.68 7.18 13.03 29.42 7.70 7.11 12.35 23.34

HCA-d+LDS 12.42 7.28 12.47 28.24 7.77 7.21 12.25 22.43
CLS+LDS+ranksim 12.33 6.70 13.16 29.10 7.25 6.63 12.26 22.77

HCA-add+LDS+ranksim 12.15 6.77 12.09 28.80 7.26 6.72 11.39 23.48
HCA-mul+LDS+ranksim 12.24 6.69 12.69 29.01 7.22 6.63 11.84 23.22

HCA-d+LDS+ranksim 11.92 6.88 11.67 27.72 7.31 6.82 10.99 22.04

Table 6. Comparison on IMDB-WIKI-DIR Dataset.

Methods
bMAE↓ MAE↓

All Many Med. Few All Many Med. Few
Regression [23] 9.72 6.62 8.80 16.66 7.57 6.61 8.73 13.48

Regression+LDS [23] 9.12 6.98 8.87 13.66 7.67 6.98 8.87 10.91
Regression+LDS +ranksim [7] 7.96 6.34 7.84 11.35 6.91 6.34 7.80 9.92

Balanced MSE [13] 8.97 7.65 7.43 12.65 7.78 7.65 7.45 9.99
DC-regression [21] 9.70 6.82 8.77 16.16 7.65 6.82 8.70 12.55

DC-regression+LDS [21] 9.48 7.36 9.14 14.04 8.03 7.36 9.13 11.26
CLS 9.14 6.89 8.62 14.08 7.58 6.89 8.51 11.60

CLS+LA [11] 8.86 7.80 8.82 11.03 8.20 7.80 8.87 10.06
HCA-add 8.95 6.91 8.26 13.53 7.49 6.91 8.17 11.05
HCA-mul 8.97 6.93 8.35 13.52 7.52 6.93 8.25 11.10

HCA-d 8.85 6.86 8.31 13.26 7.45 6.86 8.22 10.90
CLS+LDS 8.75 7.17 8.29 12.27 7.63 7.17 8.30 10.14

HCA-add+LDS 8.40 7.22 7.83 11.18 7.53 7.22 7.82 9.61
HCA-mul+LDS 8.54 7.25 8.02 11.49 7.60 7.25 8.02 9.70

HCA-d+LDS 8.46 7.11 7.80 11.64 7.47 7.11 7.77 10.06
CLS+LDS+ranksim 7.99 6.66 7.21 11.20 6.97 6.66 7.16 9.34

HCA-add+LDS+ranksim 7.82 6.67 7.12 10.59 6.94 6.67 7.07 9.10
HCA-mul+LDS+ranksim 7.85 6.68 7.14 10.71 6.95 6.68 7.10 9.17

HCA-d+LDS+ranksim 7.87 6.74 7.14 10.66 7.01 6.74 7.13 9.22

Table 7. Comparison on AgeDB-DIR Dataset.

to the criteria in IMDB-WIKI-DIR [23] (> 100 samples). We report the overall results in Table 8 and detailed results for
relatively many/medium/few shots can be found in Table 9. We can observe that HCA shows improvements to its naive
classification baselines and it is also comparable to or better than other regression methods.
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