
A. Training and Inference Algorithms

In this section, we present detailed training and inference

algorithms of the proposed DiffSal framework.

Training. In the training phase, we perform the diffu-

sion process that corrupts ground-truth saliency maps S0 to

noisy maps St, and train the Saliency-UNet to reverse this

process. Algorithm 1 provides the overall training proce-

dure.

Inference. Algorithm 2 summarizes the detailed inference

process of the proposed DiffSal. The parameter steps de-

notes the number of iterative denoising steps. Specifically,

at each sampling step, the Saliency-UNet takes as input

random noisy maps or the predicted saliency maps of the

last sampling step and outputs the estimated saliency maps

of the current step. We then adopt DDIM to update the

heatmaps for the next step.

Algorithm 1: DiffSal Training

Input: frames: I , audio: A, T , gt maps: S0

1 repeat

2 fv = VideoEncoder(I);
3 fa = AudioEncoder(A);
4 t ∼ Uniform(1, ..., T );
5 St =

√
ᾱtS0 +

√
1− ᾱtϵ, ϵ ∈ N (0, I);

6 Take gradient descent step on

∆θ∥gψ(St, t, fa, fv)− S0∥22
7 until converged

Algorithm 2: DiffSal Inference

Input: frames: I , audio: A, steps, T
Output: predicted saliency map: Spred

1 fv = VideoEncoder(I);
2 fa = AudioEncoder(A);
3 St ∼ N (0, I);
4 times = Reversed(Linespace(−1, T, steps));
5 timepairs = List(Zip(times[: −1], times[1 :]));
6 for tnow, tnext to timepairs do

7 Spred = gψ(St, tnow, fa, fv)
8 St = DDIM(St, Spred, tnow, tnext)

B. Supplementary Experiments

This section continues the analysis of DiffSal’s com-

ponents, evaluates DiffSal’s performance on three video

datasets, and presents visualization results.

B.1. Further analysis of DiffSal

Analyzing the Performance of DiffSal using Different

Video Encoders. We conduct experiments within DiffSal

using video encoders employed in other SOTA works, e.g.,

the 3D ResNet in STAViS and the S3D in CASP-Net, as il-

lustrated in the table below. In comparison to Table 7, Diff-

Sal (w/ S3D) surpasses CASP-Net, while DiffSal (w/ 3D

ResNet) also outperforms STAViS. This highlights the su-

periority of our diffusion model-based framework under the

same encoders and affirms DiffSal’s adaptability to various

types of encoders.

Method
AVAD ETMD Coutrot1

CC ↑ SIM ↑ CC ↑ SIM ↑ CC ↑ SIM ↑
DiffSal(w/ 3D ResNet) 0.632 0.471 0.583 0.441 0.521 0.417

DiffSal(w/ S3D) 0.708 0.541 0.637 0.492 0.578 0.469

DiffSal(w/ MViT) 0.738 0.571 0.652 0.506 0.638 0.515

Table 7. Compare the performance of DiffSal using different video

encoders.

Analyzing the Number of Multi-modal Attention Mod-

ulation Stages. The decoder part of the Saliency-UNet

is configured with four stages by default. Figure 6 shows

the impact of varying the number of multi-modal attention

modulation stages on task performance across the AVAD

and ETMD datasets. Notably, the most optimal perfor-

mance is achieved when the number of multi-modal atten-

tion modulation stages is set to 4. These results imply that

Saliency-UNet benefits from progressively fusing audio and

video features at multiple scales.

Visualizing Key Audio-Visual Activities. Figure 7 illus-

trates the key audio-visual activity features learned by the

multi-modal interaction module during the generation of

the saliency maps in DiffSal. It is obvious that the high-

lighted key audio-visual activity regions correspond well to

the sound sources in the frame. For example, the DiffSal

model can focus on the main speaker in two-person dia-

log scenes with the help of sound, and attend to the posi-

tion of musical instruments in playing scenes. This further

confirms the ability of the proposed multi-modal interaction

module to capture key audio-visual activity regions, which

in turn enhances saliency prediction performance.

B.2. Comparison with Video Saliency Prediction
Methods

For comprehensive validation, the performance of the

video-only version of the DiffSal model is analyzed on three

commonly used video datasets: DHF1k [53], Hollywood2

[36], and UCF-Sports [41]. (i) DHF1k comprises 600 train-

ing videos, 100 validation videos, and 300 testing videos, all

with a frame rate of 30 fps. The DiffSal model can only be

evaluated on the validation set of DHF1k due to unavailable

annotations of the test set, following [28, 35]. (ii) Holly-

wood2 consists of 1707 videos extracted from 69 movies,

with 12 categorized action classes. For training, 823 videos
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Figure 6. Analyzing the effect of varying the number of multi-

modal attention modulation stages on the AVAD and ETMD

datasets.

are used, and for testing, 884 videos are utilized. (iii) UCF-

Sports contains 150 videos, with 103 for training and 47

for testing. These videos are collected from broadcast TV

channels and cover 9 sports, including diving, weightlifting,

and horse riding.

Table 8 shows a comparison of the video-only version

of DiffSal method against existing state-of-the-arts, includ-

ing TMFI-Net [64], TinyHD-S [28], and STSANet [55],

on three video datasets. Our approach advances the most

state-of-the-art methods by an evident margin on DHF1k

and Hollywood2 and achieves good performance on UCF-

Sports. Compared to TMFI-Net, the CC performance of

DiffSal improves from 0.524 to 0.533 on DHF1k and from

0.739 to 0.765 on Hollywood2, respectively. As for the

number of parameters and computational complexity of the

model, DiffSal has the highest number of parameters, but

only about half the computational complexity of the second

place TMFI-Net.

The size of the UCF-Sports dataset is minimal com-

pared to the DHF1k and Hollywood datasets, with only 150

videos. Training on the UCF-Sports dataset causes Diff-

Sal with more parameters to be difficult to converge com-

pletely, and only achieves a sub-optimal state. While other

models with less number of parameters are easier to fully

optimize on the UCF-Sports dataset. These experimental

results show that the DiffSal model achieves a balance be-

tween performance and computational complexity.

B.3. More Qualitative Analysis

Figures 8 and 9 show the performance of DiffSal in diverse

real-world scenarios, respectively. These visualizations

demonstrate that DiffSal’s predictions are much closer to

the ground-truth maps, whereas the CASP-Net and STAViS

methods struggle to predict the accurate saliency regions.

C. Limitations and Future Work

While DiffSal provides an effective and generalized

diffusion-based approach for audio-visual saliency predic-

tion, it also increases the number of parameters and compu-

tational complexity of the model. Exploring ways to lighten

the model can further enhance its applicability, e.g., to edge

devices with limited computational power.



Figure 7. Visualizing the key audio-visual activity features learned by multi-modal interaction module when generating saliency maps.

Each pair of pictures shows the frame of the sounding object in the scene (left) and the key audio-visual activity area overlaid (right).

Table 8. Comparison with state-of-the-art methods on three video datasets. Bold text in the table indicates the best result, and underlined

text indicates the second best result. Our DiffSal is comparable to the previous state-of-the-arts.

Method #Params #FLOPs
DHF1k Hollywood2 UCF-Sports

CC ↑ NSS ↑ AUC-J ↑ SIM ↑ CC ↑ NSS ↑ AUC-J↑ SIM ↑ CC↑ NSS↑ AUC-J↑ SIM↑
TASED-NetICCV′2019[37] 21.26M 91.80G 0.440 2.541 0.898 0.351 0.646 3.302 0.918 0.507 0.582 2.920 0.899 0.469

UNIVSALECCV′2020[18] 3.66M 14.82G 0.431 2.435 0.900 0.344 0.673 3.901 0.934 0.542 0.644 3.381 0.918 0.523

ViNetIROS′2020[30] 31.10M 115.26G 0.460 2.557 0.900 0.352 0.693 3.730 0.930 0.550 0.673 3.620 0.924 0.522

VSFTTCSVT′2021[35] 14.11M 60.16G 0.462 2.583 0.901 0.360 0.703 3.916 0.936 0.577 - - - -

ECANetNeuroComputing′2022[59] - - - - - - 0.673 3.380 0.929 0.526 0.636 3.189 0.917 0.498

STSANetTMM′2022[55] - - - - - - 0.721 3.927 0.938 0.579 0.705 3.908 0.936 0.560

TinyHD-SWACV′2023[28] 3.92M 40.22G 0.492 2.873 0.907 0.388 0.690 3.815 0.935 0.561 0.624 3.280 0.918 0.510

TMFI-NetTCSVT′2023[64] 53.41M 305.15G 0.524 3.006 0.918 0.410 0.739 4.095 0.940 0.607 0.707 3.863 0.936 0.565

Our(DiffSal) 70.54M 161.06G 0.533 3.066 0.918 0.405 0.765 3.955 0.951 0.610 0.685 3.483 0.928 0.543
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Figure 8. Comparison of visualized saliency maps from the ground-truth, our DiffSal, and previous state-of-the-art CASP-Net and STAViS.
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Figure 9. Comparison of visualized saliency maps from the ground-truth, our DiffSal, and previous state-of-the-art CASP-Net and STAViS.


