
Efficient Deformable ConvNets: Rethinking Dynamic and Sparse
Operator for Vision Applications

Supplementary Material

A. Implementation Details

Environment: We use an A100 80GB SXM GPU to
benchmark throughput on all experiments. The software en-
vironment is PyTorch 1.13, CUDA 11.7, cuDNN 8.5. When
testing Flash Attention [2], we use Flash Attention 2.3.1.
When testing Window Attention in Swin Transformer, we
use the PyTorch implementation from timm 0.9.7 [3].

2D object detection on COCO: To validate the effective-
ness of our method in 2D object detection, we employed two
object detection methods: Mask R-CNN and Cascade Mask
R-CNN, primarily referring to the settings of Internimage.
Following common practices. We used two schedules: 1x
(12 epochs) and 3x (36 epochs) to respectively assess the
convergence speed and final performance of our model. For
the 1× schedule, images are resized such that the shorter
side is 800 pixels, with the longer side not exceeding 1,333
pixels. During the evaluation phase, the shorter side of input
images is consistently set to 800 pixels. For the 3× schedule,
the shorter side is resized to a range between 480 and 800
pixels, while the longer side remains capped at 1,333 pixels.
The base learning rate is set at 1e-4 for a batch size of 16. We
employ the AdamW optimizer, incorporating a weight decay
of 0.05. The initialization of the backbone is the pre-trained
classification weights.

2D semantic detection on ADE20K: We employed the
UperNet to validate the effectiveness of our method in 2D
semantic segmentation on the ADE20K dataset. Our ex-
perimental setup is primarily based on InternImage. For
FlashInternImage-T/S/B and FlashInternImage-L, we use
the AdamW optimizer with learning rates of 6e-5 and 2e-5,
respectively. The crop size for FlashInternimage T/S/B is
set to 512, while for FlashInternImage-L, it is set to 640.
We train all our models using a batch size of 16 for 160k
iterations to ensure a fair comparison with previous meth-
ods. The initialization of the backbone is also the pre-trained
classification weights.

3D object detection on nuScenes: We employed BEV-
FormerV2 to validate the effectiveness of our method in 3D
object detection on nuScenes. Adhering to the settings of
BEVFormerV2, the backbone initialization is pretrained on
the COCO dataset. In alignment with BEVFormerV2, we
utilized data spanning a total of 8 seconds, encompassing
both past and future information. We use the AdamW opti-

Model #param FPS DINO
AP APS APM APL

Swin-T 48.2M 37 / 50 51.1 34.3 53.9 66.1
ConvNext-T 48.5M 39 / 54 51.0 33.5 53.9 65.8
InternImage-T 48.7M 33 / 37 53.9 37.7 57.7 68.7
FlashInternImage-T 48.6M 39 / 48 54.7 37.9 58.6 69.8
Swin-B 108M 24 / 32 53.1 36.8 56.7 68.9
ConvNeXt-B 109M 28 / 36 53.1 35.5 56.6 68.5
InternImage-B 116M 24 / 26 54.8 38.2 58.6 70.3
FlashInternImage-S 68.8M 33 / 41 55.3 39.0 59.2 71.1
FlashInternImage-B 116M 28 / 35 56.0 41.2 59.8 71.2
Swin-L 218M 17 / 24 56.1 39.6 59.8 71.6
ConvNeXt-L 219M 20 / 27 55.9 39.8 59.5 71.1
InternImage-L 241M 17 / 18 57.6 44.1 61.5 73.4
FlashInternImage-L 241M 20 / 26 58.8 43.1 62.6 74.6

Table 1. Object detection performance with DINO on COCO
val2017. APS , APM , and APL indicate the results for small, mid-
dle, and large bounding boxes. FPS metrics are reported based
on single-scale testing. FlashInternImage, when integrated with
DCNv4, not only achieves superior performance but also maintains
a competitive inference speed. All experimental results were ob-
tained with our codebase.

mizer with a batch size of 16 and a learning rate of 4e-4. We
train the model for 24 epochs.

B. Additional Experimental Results
Downstream results with advanced headers: We em-
ployed the more advanced DINO [4] and Mask2Former [1]
to further validate the effectiveness of our FlashInternImage,
as shown in Tab. 1 and Tab. 3. For 2D object detection on
COCO with DINO head, we train our model with 12 epochs.
During the training phase, we adopt the same multi-scale
training strategy that introduced above. Other settings, in-
cluding optimizer, weight decay, and learning rate, are also
the same as those used in Mask-RCNN. For 2D semantic
segmentation on ADE20K, we set the learning rate to be
1e-4 with a batch size of 16. For Base and Large scale, we
use a crop size of 640. Other settings are the same as those
used in UperNet.

Under the application of more advanced task heads, our
method still maintains a significant advantage in accuracy
while also offering competitive inference speed.

Downstream results for other backbones: As demon-
strated in Tab. 4, we evaluated the performance of “Con-
vNext+DCNv4” and “ViT+DCNv4” on downstream tasks,



Operator Runtime (ms)
56× 56× 128 28× 28× 256 14× 14× 512 7× 7× 1024 14× 14× 768

Conv (3× 3) 0.833 / 0.596 0.708 / 0.464 0.653 / 0.384 0.687 / 0.459 1.31 / 0.754
Attention (torch) 32.0 / 20.3 4.06 / 2.66 1.01 / 0.801 0.789 / 0.357 2.28 / 1.44
FlashAttention-2 N/A / 2.81 N/A / 0.641 N/A / 0.256 N/A / 0.209 N/A / 0.451
Window Attn (7× 7) 4.48 / 1.87 2.39 / 1.00 1.35 / 0.581 0.824 / 0.371 2.12 / 0.911
DCNv3 3.28 / 2.98 1.62 / 1.42 0.846 / 0.748 0.526 / 0.546 1.37 / 1.10
DCNv4 (lightweight) 0.762 / 0.547 0.419 / 0.313 0.375 / 0.192 0.306 / 0.130 0.389 / 0.249
DCNv4 1.28 / 0.873 0.738 / 0.483 0.452 / 0.324 0.334 / 0.265 0.787 / 0.463

Table 2. Module-level operator benchmark on standard input shape with various downsample rates.

Model crop #param FPS mIoU
size (SS)

Swin-T 5122 47.4M 96 / 146 49.6
ConvNeXt-T 5122 47.7M 111 / 155 49.6
InternImage-T 5122 48.6M 91 / 123 50.6
FlashInternImage-T 5122 48.5M 105 / 145 51.3
Swin-B 6402 110M 48 / 71 51.9
ConvNeXt-B 6402 111M 54 / 77 50.7
InternImage-B 6402 118M 45 / 58 52.1
FlashInternImage-S 6402 71.5M 60 / 80 52.6
FlashInternImage-B 6402 118M 55 / 75 53.4
Swin-L 6402 218M 37 / 55 56.1
ConvNeXt-L 6402 220M 41 / 60 55.7
InternImage-L* 6402 242M 33 / 45 55.5
FlashInternImage-L 6402 242M 41 / 59 56.7

Table 3. Semantic segmentation performance on the ADE20K
validation set. All models are trained with Mask2Former. “SS” de-
notes single-scale testing. FPS is reported with single-scale testing.
FlashInternImage w/ DCNv4 exhibits a significant advantage in
terms of performance while also maintaining competitive inference
speed. *: In this experiment, we observed a significant overfitting
phenomenon.

specifically focusing on semantic segmentation tasks using
the UperNet head. Our observations indicate that substi-
tuting the previously used DWConv or Attention with our
DCNv4 leads to an increase in inference speed. For Con-
vNext, using DCNv4 rather than DWConv also achieves
higher performance.

Visualization for image generation: We show qualitative
results of our latent diffusion model with DCNv4 in Fig. 1
for a better illustration. DCNv4 also can work well in this
generation task.

Module-level speed benchmark: We show module-level
speed benchmark results in Tab. 2 and 5, where additional
linear projection layers in each operator are also considered.
We also include the regular convolution with a 3× 3 window
here as it mixes channel information. For DCNv4, we show
two variants: where the first implementation removes the
input/output projection layers inside the module (denoted

Model mIoU FPS
ConvNeXt-B 49.1 95 / 147
ConvNeXt-B + DCNv4 49.9 96 / 164
ViT-B 48.8 51 / 74
ViT-B + DCNv4 48.8 67 / 92

Table 4. DCNv4 in other architecture. All models are trained
with UperNet on ADE20K. By replacing ConvNext’s DWConv
with DCNv4, we not only achieved better inference speeds but also
obtained improved results. Replacing the Attention in ViT with
DCNv4 resulted in faster inference speeds while maintaining the
same level of performance.

as lightweight). We use this implementation in the “Con-
vNeXt + DCNv4” experiments as it shares similar properties
(only performs spatial aggregation) and the amount of com-
putation/parameters as the original depthwise convolution
in ConvNeXt. The second implementation includes the in-
put/output linear projections and is used in the rest of the
models described in the paper.

References
[1] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander

Kirillov, and Rohit Girdhar. Masked-attention mask trans-
former for universal image segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1290–1299, 2022. 1

[2] Tri Dao. Flashattention-2: Faster attention with better paral-
lelism and work partitioning. arXiv preprint arXiv:2307.08691,
2023. 1

[3] Ross Wightman. Pytorch image models. https://github.
com/rwightman/pytorch-image-models, 2019. 1

[4] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel M Ni, and Heung-Yeung Shum. Dino: Detr with
improved denoising anchor boxes for end-to-end object detec-
tion. arXiv preprint arXiv:2203.03605, 2022. 1

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


Operator Runtime (ms)
200× 320× 128 100× 160× 256 50× 80× 512 25× 40× 1024 64× 64× 768

Conv (3× 3) 0.602 / 0.234 0.623 / 0.199 0.725 / 0.214 0.422 / 0.281 0.532 / 0.318
Attention (torch) OOM / OOM 26.0 / 13.1 3.05 / 1.99 0.599 / 0.433 4.47 / 2.69
FlashAttention-2 N/A / 13.4 N/A / 1.81 N/A / 0.354 N/A / 0.158 N/A / 0.531
Window Attn (7× 7) 1.49 / 0.657 0.867 / 0.377 0.539 / 0.274 0.409 / 0.276 0.920 / 0.410
DCNv3 1.06 / 0.964 0.576 / 0.560 0.451 / 0.459 0.387 / 0.409 0.534 / 0.543
DCNv4 (lightweight) 0.283 / 0.207 0.187 / 0.143 0.134 / 0.110 0.105 / 0.0912 0.180 / 0.125
DCNv4 0.446 / 0.346 0.313 / 0.272 0.267 / 0.270 0.268 / 0.253 0.325 / 0.271

Table 5. Module-level operator benchmark on high-resolution input shape with various downsample rates.

Figure 1. ImageNet 256× 256 generation results of U-Net + DCNv4 latent diffusion model.


	. Implementation Details
	. Additional Experimental Results

