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In the appendix, we provide detailed information about
the proposed MVHumanNet and various experiments con-
ducted on our dataset. Sec. 1 introduces the other capture
system and provides details about the data collection and
annotation. Sec. 2 visualizes additional experimental re-
sults.

1. Dataset Details

1.1. The Second Multiview Capture System

We utilize two sets of synchronized indoor video cap-
ture systems to collect the MVHumanNet dataset. We have
provided a detailed account of one system in the main
text, while we introduce the second system here. The sec-
ond capture system consists of 24 high-definition industrial
cameras which are evenly distributed on 16 pillars in a two-
layer structure, as shown in Fig. 1. The collection system
has approximate dimensions of 2.2 meters in height and
roughly 4.3 meters in diameter. The lenses of each camera
are meticulously aligned towards the center of the prism.
To ensure clear image capture from different perspectives,
we place light sources at the center of each edge of the sys-
tem. During the data collection process, the frame rate of all
cameras is set to 30 frames per second, enabling the capture
of smooth and detailed motion sequences.

We capture a total of 9,000 outfits by using these two sets
of systems. The 48-view system captures approximately
5,000 outfits with a resolution of 4096×3000, while the sec-
ond system accounts for the remaining 4,000 outfits with a
resolution of 2448×2048.
Camera Calibration We utilize the same commercial solu-
tion based on CharuCo boards to achieve fast and efficient
camera calibration. Recognizing the potential for perform-
ers to inadvertently come into contact with the capture stu-
dio or cameras during their entry or execution of actions,
we implement a calibration process at the beginning, mid-
dle, and end of each day. This procedure aims to account for

any potential changes in camera parameters. We also care-
fully adjust other parameters, such as lighting, exposure,
and camera white balance to capture high-quality data.

1.2. Action Statistics

We also make efforts to prepare diverse performed ac-
tions that cover a broad spectrum of action categories, in-
cluding sports, social engagements, education, entertain-
ment and professional actions, as shown in Fig. 5. These
categories collectively contribute to the incorporation of
500 distinct actions within our MVHumanNet dataset, pro-
viding a comprehensive range of options.

1.3. Coarse to Fine Masks

Based on the RVM [6] and powerful SAM [5], we pro-
pose a coarse-to-fine mask segmentation strategy. Specif-
ically, we leverage RVM to propose a coarse mask and a
candidate bounding box for the performer. Subsequently,
the candidate bounding box serves as input to the robust
SAM, enabling the prediction of refined masks. The com-
parative results between the coarse and fine masks are vi-
sually demonstrated in Fig. 2. From left to right, the im-
age illustrates the input image, coarse mask, fine mask, and

Figure 1. The visualization of the second multiview synchro-
nized capture system. Our second capture system consists of 24
industrial cameras with a resolution of 2448×2048.
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Figure 2. The visualization results of our coarse to fine mask
segmentation strategy. Note that we crop all images into a square
to show the comparison results.

segmented performer. The results clearly indicate that the
coarse mask exhibits more substantial errors. For instance,
in the first row, the coarse mask fails to accurately segment
the background area between the arm and the body, while
the fine mask successfully addresses this issue.

1.4. Text Description

Throughout the entire process of data collection, we
carefully record the essential details of each identification
encompassing crucial information such as gender and age.
Furthermore, we employ manual labeling to furnish text de-
scriptions of the performers’ hairstyles and shoes, as well
as each outfit, including clothing color, style and material.
Fig. 3 provides a visual representation, while Fig. 4 offers
additional examples. These text descriptions can be utilized
to support tasks such as text-to-image generation, as demon-
strated in the experimental results presented in Sec. 2.2.

2. Experimental Results

In Sec. 1.1, we illustrate our utilization of two capture
systems to collect a total of 9,000 sets of clothing. Through-
out all experiments, we employ data from both capture sys-
tems in a 1:1 ratio. For instance, in Sec. 2.1, we train NeRFs
using a maximum of 5,000 outfits, with each capture system
contributing approximately half of the data.

Figure 3. A text description demo. The description contains var-
ious information, such as age, height, garment and hairstyle.

2.1. NeRF Reconstruction for Human

In the main text, we have presented comprehensive ob-
jective and subjective comparison results of training a gen-
eralizable NeRF model using varying amounts of data,
along with fine-tuning experiments on HuMMan [1] using
MVHumanNet. We include additional visualizations here.
Fig. 6 showcases the comparative results of training IBR-
Net [8] with 100, 2,000, and 5,000 outfits, while Fig. 7
demonstrates the corresponding outcomes of training GP-
NeRF [2] with the same datasets. Additionally, Fig. 8 fur-
ther demonstrates the comparison results of fine-tuning on
HuMMan [1] using MVHumanNet as a pretraining dataset.
The supplementary video materials contain a more exten-
sive collection of visual results.
Differences in evaluation settings between IBRNet and
GPNeRF. As GPNeRF [2] is specially designed for human
rendering, it exploits the projected SMPL model to crop the
human area of a rendered image and only evaluates the hu-
man area with the three metrics. In contrast, IBRNet [8] is
a generalizable NeRF method for general scenes, so it eval-
uates the whole rendered image by default. Additionally,
GPNeRF [2] masks the background area with black, while
IBRNet [8] uses a white background.

2.2. Text-driven Image Generation

We utilize MVHumanNet dataset to finetune the Stable
Diffusion [7], and the Fig. 9 visualize the extra results of
text-driven image generation. Given a paragraph of text de-
scription and a pose as inputs, we can easily obtain the de-
sired realistic results. For example, in the third row, when
the input text contains keywords indicating a ponytail, the
output images align well with the expected results.

2.3. Human Generative Model

Additional results of 2D and 3D generative models are
presented in Fig. 10 and Fig. 11. Based on the obtained re-
sults, it is evident that the visual quality of the 2D output



outperforms that of the 3D results, which is consistent with
our initial expectations. This disparity can be attributed to
the relatively early stage of 3D research compared to the
well-established domain of 2D digital human generation.
One significant contributing factor to this discrepancy is the
limited availability of 3D datasets. We hope that with the
opening of MVHumanNet, it can help the community fur-
ther explore the relevant methods.



Figure 4. Sampled examples of text descriptions for different performers.



Figure 5. The visualization of 500 action labels.
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Figure 6. More visualization results of the IBRNet [8]. GT means ground truth. The number of 100, 2,000, and 5,000 indicate the
respective quantities of outfits utilized during the training process.
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Figure 7. More visualization results of the GPNeRF [2]. GT means ground truth. The number of 100, 2,000, and 5,000 indicate the
respective quantities of outfits utilized during the training process.



GT
Train from 

scratch
w/o finetune w/ finetune GT

Train from 

scratch
w/o finetune w/ finetune

Figure 8. More visualization results of IBRNet [8] (top) and GPNeRF[2] (bottom) fine-tuned on HuMMan [1] dataset.



This man wears a tank top and shorts. 

The pure red top is made of patterned 

cotton, while the jeans are black and 

denim. He has short bob haircut and 

wears gray sneakers.

This woman wears a tank top and shorts. 

The pure red top is made of patterned 

cotton, while the jeans are black and 

denim. She has short bob haircut and 

wears gray sneakers.

This man wears a short-sleeved T-shirt 

and cargo pants. The round-neck gray 

T-shirt with letters on the chest is made 

of cotton fabric, while the pure green 

cargo pants are made of polyester fabric. 

He has short black hair and wears black

sneakers.

A woman wears a short-sleeved T-shirt 

and a short skirt. The pure yellow T-shirt 

is made of cotton fabric, while the pure 

deep gray skirt is made of denim fabric. 

She has a brown ponytail and wears white

sneakers.

She wears a elbow-sleeved dress. The 

pure blue dress is made of denim fabric 

and with a lapel. She has her long black 

hair tied up and wears brown sneakers.

Figure 9. More visualization results of text-driven image generation. Given a text description and a target pose, we can produce
high-quality results with the same consistency as text description and SMPL.



Figure 10. More visualization results of StyleGAN2 [4] trained with A-posed multi-view images in MVHumanNet. We randomly
sample latent codes from Gaussian distribution and obtain the results.



Figure 11. More visualization results of GET3D [3] trained with A-posed multi-view images in MVHumanNet.
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