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Supplementary Material

1. Additional Details about Eq. 5 in the Main
Paper

In our framework, inspired by [3], we conduct a Mixture-
of-Cauchy-based (MoC-based) forward diffusion process
through Eq. 5 in the main paper as:

d̂k =
√
αkd0 + (1−

√
αk)µ

MoC +
√
1− αkϵ

MoC (1)

where d̂k ∈ RN×2 represents a sample (i.e., a set
of N keypoints coordinates) from the generated dis-
tribution D̂k, µMoC =

∑U
u=1 1uµu, and ϵMoC ∼

Cauchy(0,
∑U

u=1(1uγu)). 1u is a zero-one indicator such
that

∑U
u=1 1u = 1 and Prob(1u = 1) = πu.

As shown, d̂k is formulated directly from d0 in the above
equation. Here, we explain in more detail how such a for-
mulation is derived from the stepwise MoC-based forward
diffusion process. Specifically, defining d̃k = d̂k − µMoC,
we first formulate the posterior distribution q(d̃1:K |d0) from
d̃1 to d̃K as (d̃0 = d0 − µMoC):
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(2)
Based on Eq. (2), we can construct d̃k from d̃k−1 as:
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MoC (3)

From Eq. (3), recall that αk = 1 − βk and αk =
∏k

s=1 αs,
we can further formulate d̃k as:
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By replacing d̃k back to d̂k−µMoC and d̃0 back to d0−µMoC,
from Eq. (4), we have:

d̂k =
√
αk(d0 − µMoC) +

√
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MoC + µMoC

=
√
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√
αk)µ

MoC +
√
1− αkϵ

MoC
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which is Eq. 5 in the main paper.

2. Additional Implementation Details

In the forward diffusion process, we generate the sequence
{αk}Kk=1 by adopting the cosine noise scheduler proposed
in [2]:

αk =
f(k)

f(0)
, f(k) = cos (

k/K + o

1 + o
· π
2
)
2

(6)

where the offset o is set to 0.008 in our experiments. To
fit DK as an MoC distribution D̂K , we sample 1500 sets
of keypoints coordinates from DK (i.e., V =1500), and use
these samples to optimize the MoC parameters ηMoC.

In the reverse process, at the k-th step, to inject the in-
formation about the current step number k into the diffusion
model, we generate a timestep embedding fk

D ∈ R1×128 us-
ing the sinusoidal function following [4, 7]. Specifically, for
the element fk

D[2i] at the even (2i) index of fk
D, we set it to

sin(k/100002i/128). While for the element fk
D[2i+1] at the

odd (2i+ 1) index of fk
D, we set it to cos(k/100002i/128).

Moreover, we accelerate the model inference pro-
cess (reverse process) during testing by adopting
the DDIM acceleration technique [7]. Specifically,
given the maximum of K (K=100) steps, we take the
99th, 89th, 79th, 69th, 59th, 49th, 39th, 29th, 19th, 9th
steps (i.e., 10 steps) to finish the whole reverse process.
The ground-truth heatmaps HGT are constructed using 2D
Gaussian kernels with the standard deviation σ = 2. We
train the diffusion model for 1500 epochs with a batch size
of 256.

3. Additional Ablation Studies

We conduct more ablation experiments on LM-O dataset.
In these experiments, we report the model performance on
ADD(-S) metric averaged over all the objects.

Table 1. Evaluation on the
number of pre-selected 3D
keypoints N .

Method ADD(-S)
N = 8 73.7
N = 32 77.8
N = 128 79.6
N = 256 79.7

Impact of the number of pre-
selected 3D keypoints N . In
our framework, for each type
of object, we pre-select N 3D
keypoints from the object CAD
model. These N pre-selected 3D
keypoints will be used with the
predicted coordinates of the N
corresponding 2D keypoints to
compute the 6D object pose. Here we evaluate different
choices of N , and report the results in Tab. 5. As shown, as
the number of pre-selected keypoints increases, the model
performance steadily improves. This may be because that
establishing more pairs of 2D-3D correspondence can help
the model to better handle challenges such as occlusions



for better performance. When N exceeds 128, the model
performance improvement is trivial. Thus taking the model
efficiency into the consideration, we set N to 128 in our
experiments.

Table 2. Evaluation on the
number of diffusion steps
K.

Method ADD(-S)
K = 20 76.3
K = 50 78.4
K = 100 79.6
K = 200 79.8

Impact of the number of diffu-
sion steps K. We further evalu-
ate the impact of number of dif-
fusion steps K on the model per-
formance. As shown in Tab. 2,
the model performance consis-
tently improves with the increase
of diffusion steps. This might be
because that with more diffusion steps, the model can more
smoothly perform the distribution transformation with the
reverse process. When the number of diffusion steps K ex-
ceeds 100, the model performance becomes stable. Thus,
we set K to 100 in our experiments.

Table 3. Evaluation on the
number of Cauchy kernels
U of the MoC distribution.

Method ADD(-S)
U = 1 75.4
U = 5 78.5
U = 9 79.6
U = 13 79.7

Impact of the number of
Cauchy kernels U of the MoC
distribution. When character-
izing DK as a MoC distribution
D̂K during the forward process,
we set the number of Cauchy
kernels U in D̂K to 9. Here
we evaluate other choices of U ,
and report the results in Tab. 3.
As shown, the model performance improves with the
increase of Cauchy kernels. This might be because that by
using more Cauchy kernels, the modeled MoC distribution
D̂K can characterize DK more accurately, and thus the
diffusion model can better utilize the prior knowledge in
DK .

Table 4. Evaluation on the
number of sampled sets of
keypoints coordinates M .

Method ADD(-S)
M = 1 77.2
M = 3 78.9
M = 5 79.6
M = 7 79.7

Impact of the number of sam-
pled sets of keypoints coordi-
nates M . In our framework, we
sample M sets of keypoints co-
ordinates from DK to perform
the reverse process, since we aim
to convert a distribution towards
another distribution. We set M
to 5 in our experiments. Here to
evaluate the impact of the number of sets M , we evaluate
different choices of M and report the results in Tab. 4. As
shown, we can obtain better model performance with larger
M , i.e., more sampled sets.

Table 5. Evaluation on the effectiveness
of the MoC design.

Method ADD(-S)
Standard diffusion w/o MoC 73.1
Heatmaps as condition 76.2
Diffusion w/ MoG 77.7
6D-Diff 79.6

Impact of MoC de-
sign. Here, we
extend our ablation
study about the MoC
design in Tab.5 of
the main paper and
further compare our
method to a variant (diffusion w/ MoG). In this variant, we

use the Mixture of Gaussian (MoG) model instead of MoC
model to characterize the normalized heatmap and train the
model to start the reverse process from the characterized
MoG distribution. As shown in Tab. 5, our method out-
performs this variant. Such a result may be attributed to
the robustness of the MoC model to potential outliers in the
distribution to be characterized [5].

4. Additional Qualitative Results
We qualitatively compare our method with the strong base-
line [6] in Fig. 1. As shown, compared to the baseline, our
method produces more accurate object pose predictions, es-
pecially when facing occlusions and clutter in the scene.
Moreover, in Fig. 2, we show qualitative results of our
method on both LM-O dataset and YCB-V dataset. As
shown, our framework can produce accurate 6D object pose
estimations even in the presence of severe occlusions and
cluttered backgrounds, demonstrating the effectiveness of
our framework to handle the noise and indeterminacy in 6D
object pose estimation for accurate predictions.

Figure 1. Qualitative comparison between the strong baseline
(CheckerPose [6]) and our method. Green bounding boxes rep-
resent the ground-truth poses, blue bounding boxes represent the
predicted poses of our method and red bounding boxes represent
the predicted results of CheckerPose [6].

5. Additional Visualization of the Denoising
Process

In Fig. 3, we display examples of the denoising process
in our method. As shown, our trained model is able to ef-
fectively eliminate the noise and indeterminacy in the ini-



(a) Qualitative results of our framework on LM-O dataset.

(b) Qualitative results of our framework on YCB-V dataset.

Figure 2. Qualitative results of our framework. Green bounding boxes represent the ground-truth poses and blue bounding boxes represent
the predicted poses of our framework.

Figure 3. Visualization of the denoising process of samples with our framework. The target objects are the red cat (the top example) and
the red ape (the bottom example) respectively. For clarity, we here show three keypoints only for each object. The red dots indicate the
ground-truth locations of the keypoints.

tial distribution in a stepwise manner, and finally produce a
high-quality and determinate distribution of keypoints coor-

dinates.



6. Runtime Analysis

We test the runtime of our framework on a desktop with
an AMD 3.90GHz CPU and an Nvidia 4090 GPU. The ob-
ject detection with FCOS detector [9] takes 16.4 ms. The
runtime of the keypoints distribution initializer is 20.3 ms.
Then performing the reverse diffusion process takes 102.8
ms. Finally, for computing the object pose based on the
prediction of the diffusion model, we use Progressive-X [1]
as the PnP solver and it takes 58.2 ms. In this way, our
framework totally needs around 197.7 ms to obtain the ob-
ject pose.

7. Additional Details about Model Architec-
tures

In Fig. 4, we show the transformer encoder-decoder archi-
tecture in our diffusion model. As shown, the encoder con-
sists of three transformer layers and each transformer layer
contains a multi-head self-attention module, a MLP and
layer normalization operations. As for the decoder, it also
consists of three transformer layers where each transformer
layer contains a multi-head self-attention module, a multi-
head cross-attention module, a MLP and layer normaliza-
tion operations. For both the encoder and the decoder, the
number of heads in each multi-head attention module is 8
and each layer involves skip connections. We use two lin-
ear layers with a ReLU activation function as the MLP in
each transformer layer. The encoder outputs are sent into
each decoder layer to serve as the conditional information
to facilitate the reverse process in the decoder. The decoder
outputs are used to produce the final prediction of the key-
points coordinates.

We show the architecture of the keypoints distribution
initializer in Fig. 5. As shown, the initializer consists
of a ResNet-34 backbone, two deconvolution layers fol-
lowed by a 1 × 1 convolution layer. More specifically,
assuming the size of the input ROI image is H × W × 3
(H = W = 256 in our experiments), by sending the ROI
image into the ResNet-34 backbone, we can obtain the ob-
ject appearance features fapp ∈ RH

16×
W
16×512. Then we send

fapp into two deconvolution layers to increase the size of the
feature maps. After passing through a 1 × 1 convolution
layer, we finally obtain the predicted keypoint heatmaps
Hpred ∈ RH

4 ×W
4 ×N where N denotes the number of key-

points. Moreover, fapp combined with features obtained
from methods [6, 8], will be used to produce the condi-
tional information to aid the reverse process in the diffusion
model.

8. Per-object Evaluation on YCB-V Dataset

In Tab. 6, we show more detailed (per-object) results on
YCB-V dataset. As shown, for most objects, our frame-
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Figure 4. Illustration of the transformer encoder-decoder architec-
ture in our diffusion model.

Figure 5. Illustration of the architecture of the keypoints distribu-
tion initializer.

work outperforms the state-of-the-art method on the ADD(-
S) metric, and is comparable to the state-of-the-art method
on the AUC of ADD-S and AUC of ADD(-S) metrics.
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