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A. Experimental Setup Details
In this section, we provide more details about our experimental setup.

A.1. Datasets

We elaborate on the four datasets used in our main experiments and Tab. 1 shows the details of datasets partitioning.
CIFAR-10 [9]. CIFAR-10 is a classification benchmark dataset comprising 60,000 3×32×32 images categorized into 10

classes. It features 50,000 training images and 10,000 testing images, evenly distributed among the classes.
CINIC-10 [2]. CINIC-10 extends CIFAR-10 by adding downsampled ImageNet samples in the same classes with CIFAR-

10. Both datasets share the same classes, but CINIC-10 consists of 270,000 3×32×32 images. In comparison to CIFAR-10,
CINIC-10 presents a more complex and diverse distribution.

CelebA [12]. CelebA is a dataset related to facial attribute classification. It includes 202,599 facial images from 10,177
different celebrities, and each image is associated with 40 different attribute labels. In our experiment, we resize the images
in the CelebA to 3×64×64.

FFHQ [8]. FFHQ was originally designed as a benchmark for Generative Adversarial Networks which contains 70,000
facial images. The dataset exhibits rich diversity and noticeable variations in terms of age, ethnicity, and image backgrounds.
As well as CelebA, we resize the images in FFHQ to 3×64×64.

Table 1. Details of the partitioning among different datasets.

Target Model Target Dataset Train Test Auxiliary Dataset Image Size
MobileNet CIFAR-10 50000 10000 CINIC-10 (5000) 3×32×32
ResNet-18 CelebA 162770 19962 FFHQ (10000) 3×64×64

A.2. Model Architectures

The detailed model architectures of the substitute client model, inverse network, and discriminator are shown in Table 2. And
Fig. 1 illustrates the different split strategies towards the target model.

B. Additional Data Reconstruction Results
We present more reconstruction results of FORA in this section.

*Corresponding author.
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Figure 1. Target models splitting settings in our experiments.

Table 2. Architectures of the substitute client, inverse network, and discriminator for two datasets in different splitting points.
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B.1. Comparison with Semi-Honest Attacks

The full results of the comparison between UnSplit, PCAT, and FORA are presented in Fig. 2 and Fig. 3.
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Figure 2. Additional results of Unsplit, PCAT and FORA on CIFAR-10 at all split points.
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Figure 3. Additional results of Unsplit, PCAT and FORA on CelebA at all split points.

B.2. Effect of Auxiliary Dataset

Then we present more detailed results of the impact of the auxiliary dataset on FORA. Fig. 4 presents complete results for
the absence of categories on FORA. Fig. 5 displays additional results regarding the impact of the size of auxiliary datasets on
FORA. Fig. 6 shows the overall results for the impact of auxiliary datasets distributions on FORA.
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Figure 4. Additional results of the absence of categories on CIFAR-10. Row ① means absence class of living. Row ② means absence class
of non-living.
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Figure 5. Additional results of varying auxiliary data size on FORA performed on CIFAR-10 and CelebA.
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Figure 6. Additional results of auxiliary dataset distribution shift on FORA performed on CIFAR-10 and CelebA.

B.3. Effect of Substitute Client Structure

In addition to the quantified results in the main text, we also present the reconstructed images by FORA under different
substitute client model architectures in Fig. 7.
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Figure 7. Additional results for FORA with varying substitute model architectures on CIFAR-10 and CelebA.

C. Defense Techniques
In this section, we first provide a detailed introduction to the several defense mechanisms evaluated in our experiments. Then
we present the additional defense results of CelebA and CIFAT-10. We finally discuss two possible adaptive defenses against
our proposed method FORA.

C.1. Defense Details

Gradients Scrutinizer. Gradients Scrutinizer (GS) [6] is a defense method against the malicious attacker FSHA [13]. In
normal SL, gradients returned by servers exhibit greater similarity within the same label compared to gradients from different
labels. However, in FSHA the client is trained as the encoder of an autoencoder to reconstruct training data without using
target labels. As a result, gradients received by the client will not show notable distinctions between the same and different
classes in FSHA. Based on this intrinsic difference, GS first computes the cosine similarity of gradients with the same label
and those of different labels in each batch according to the received gradients. Subsequently, GS will calculate decision
scores from three aspects: set gap, fitting error, and overlapping ratio, to distinguish hijacking servers from honest servers. If
the detection score is above a set threshold, it is considered a normal SL. If it falls below the threshold, it is identified as a
hijacking attack, and the training is stopped immediately.

The detection mechanism of GS depends on the model’s classification ability. Therefore, in the early stages of GS, some
batches should be skipped to avoid the detection being misguided by the model that has not been well-fitted. Following this
mechanism, we start GS at the 450th iteration in our experimental setup.

Distance Correlation Minimization. Distance Correlation [15, 18, 19] is a defense method widely used in SL to measure
and mitigate the correlation between smashed data and the raw input, thereby preventing server adversaries from reconstruct-
ing the original input data. The loss function for this approach is as follows:

L = α·DCOR(x, Fc(x)) + (1− α) · TASK(y, Fs(Fc(x))) (1)

where DCOR represents the distance correlation metric, and TASK denotes the classification loss between the true label y
and the model’s prediction. By jointly minimizing the above loss, a better tradeoff can be achieved between preserving input
data privacy and maintaining the utility of the model.

Differential Privacy. Differential Privacy was initially introduced to provide privacy guarantees for algorithms on ag-
gregate databases [4, 5], and it was later applied to deep learning through DP-SGD [1]. Differential privacy has found
widespread usage in various scenarios [10, 14], not exclusively in SL. Following the approach described in PCAT [7], we
employ DP-SGD in the client model. Specifically, the client receives gradients from the server, clips each gradient using a
threshold value C, and adds random noise to it. The client then utilizes these protected gradients to update its model, thereby
safeguarding the privacy of the subsequent smashed data transmitted to the server. Different combinations of the clipping
threshold C and noise scale σ yield varying privacy budgets ϵ and levels of accuracy reduction.

Noise Obfuscation. Titcombe et al. [16] proposed an approach where additive Laplacian noise was directly added to
smashed data before transmitting it to the server to defend against input reconstruction. This randomness introduces a higher
level of complexity for adversaries, making it more challenging for them to infer the mapping between the smashed data and
the private input.

C.2. More Defense Results and Possible Adaptive Defenses

Attack Results of CelebA. The limited effectiveness of these defenses on CelebA is illustrated in Tab. 4. In comparison
to CIFAR-10, CelebA shows a more robust performance in terms of test accuracy. This is because CelebA is employed for



a simpler binary classification task (smile classification), making the model more easily convergent even in the presence of
defense methods.

Table 3. Results on CIFAR-10 at layer 2 with smaller ϵ.

DP (ϵ) Test Acc (%) SSIM↑ PSNR↑ LPIPS↓

6 61.61% 0.590 17.49 0.496

1 61.17% 0.582 17.43 0.522

Results with Smaller ϵ on CIFAR-10. Table 3 presents the results with smaller ϵ on CIFAR-10. We observe an interesting
phenomenon: as the applied noise increased, there is a nonlinear relationship with the defense results. The possible reason is
that the noise can only act on partial gradients (client), limiting its effectiveness.

Possible Adaptive Defenses. We discuss two potential adaptive defenses. One is that the client adopts an adversarial loss
to enhance robustness against DRA [11, 21]. Though adversarial learning proves effective against certain known attacks,
client should carefully consider the additional training overhead and utility degradation it introduces. Another promising
approach is to craft noise against FORA to increase the inconsistency between client and substitute client in feature space,
which would make attack more difficult [20].

Table 4. Effect of utility and FORA performance against distance correlation minimization, differential privacy and noise obfuscation on
CelebA at layer 2.

Defense
Hyperparam Test Acc (%) SSIM↑ PSNR↑ LPIPS↓

0
(w/o defense) 91.91 0.476 17.11 0.381

DCOR (α)

0.2 91.96 0.407 15.46 0.470

0.5 92.24 0.355 14.58 0.428

0.8 91.93 0.266 12.03 0.635

DP (ϵ)

+∞ 91.91 0.460 16.21 0.424

100 91.00 0.460 16.65 0.507

10 91.41 0.435 16.54 0.455

NO (σ)

0.5 92.19 0.378 16.63 0.568

1.0 92.35 0.311 15.31 0.666

2.0 92.40 0.140 12.61 0.704



D. Limitation and Future Work
In this section, we discuss the limitations of our proposed method FORA and some possible enhancements for future work.
Previous work and FORA lack sufficient experiments on larger models and datasets e.g. vision transformer [3], so we en-
courage future work to pay more attention on larger models. Additionally, although FORA only requires auxiliary data of
the same type to launch an attack, exploring how to reconstruct client inputs in more challenging scenarios, such as when
attackers do not know the data type, is also unsolved. We hope our work can contribute to better exploring vulnerabilities of
SL and raising awareness of privacy issues within the community.

E. Label-Protected SL
In label-protected SL [17] shown in Fig. 8, besides the client model and server model, there is also a portion of model called
the top model retained on the client. In this scenario, labels are treated as private information and kept locally on the client.
Differing from label-share SL, the server model’s results are forwarded to the top model for further forward propagation. The
top model then calculates the loss using labels and received results, transferring relevant gradients to the server for parameter
updates.

Client
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Figure 8. Architecture of label-protected split learning.
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