A. Overview

In the supplementary materials, we provide detailed in-
formation on the generation of the two datasets used for
training HMFlow and HBSeg, along with corresponding
benchmarks and evaluation metrics to facilitate their use
and assessment in future research. Additionally, we include
the implementation details of the Tokenizer in both Self-
learning and Fine-tuning stages. For more comprehensive
and extensive comparisons, we have expanded our compar-
ison experiments on HuCenLife [23] to include methods tai-
lored for modeling dynamic point cloud videos, to demon-
strate the superiority of our method in capturing human mo-
tion representations. Finally, we also provide additional de-
tails regarding the size of the UniPVU-Human model and
comparisons with others.

B. Human Motion Flow (HMFlow)

B.1. Implementation Details

Prev-PC Index R
Lo, \ < Threshold filtering
T T VT VI TV oee

AdALEF i HYA |

SMPL Vertex Inaex

N
l Bidirectional filtering

Next-PClIndex [V 41 1eee 1V]

Figure 1. The pipeline of generating the flow from the previous
point cloud to the next point cloud. We associate each synthetic Li-
DAR point to its nearest SMPL vertex, to establish the correspon-
dence between synthetic LIDAR points across different frames by
using SMPL vertices indices as medium, so that we can obtain
point-wise motion flow.

Due to rotation or occlusion, point clouds may flow in
and out between consecutive frames, resulting in a lack of
temporal correspondence. But for the SMPL [11] mesh,
each mesh vertex can be matched between consecutive
frames using vertex index. Therefore, we make a large-
scale synthetic dataset, LIDARFlow-Human, by scanning
the SMPL mesh surfaces of consecutive frames using a sim-
ulated LiDAR to generate simulated LiDAR point clouds
(As shown in Figure. 1). Each simulated LiDAR point is
matched with its nearest SMPL vertex. Consequently, we
use SMPL vertices as a medium to match simulated Li-
DAR points between frames. By subtracting coordinates,

Table 1. Human Motion Flow (HMFlow) Result on LiDARFlow-
Human.

EPE] | acc_strict | acc_relaxt | outlier|
FLOT [14] | 0.14 83.67 95.77 0.78

we obtain the point-wise motion flow. Moreover, we set
a threshold to filter the distance and build the bidirectional
connections to ensure the accuracy of the matching. Specif-
ically, when the nearest distance from vertex to point is
smaller than the defined threshold D, we think them has the
unidirectional connection and we select the unidirectional
connection Clg, from previous point cloud to next point
clouds, meanwhile we select the unidirectional connection
C'pap from next point clouds to previous point clouds. The
bidirectional filter are used to delete the unidirectional con-
nection without coincidence,

Floprn = Upan N Cn2p-

B.2. Dataset and Evaluation Metrics

We will contribute LiDARFlow-Human, used for training
Human Motion Flow Estimator (HMFlow), to the commu-
nity with corresponding benchmarks. As shown in Table. 1,
we adopt the evaluation metrics used in [6, 9, 14, 22]:

¢ EPE: End Point Error (meters).

S || (Upraier)s = (Fa)|
- 7

EPE =

where (fpre:hct)i and (f;g)l are point-wise predicted mo-
tion flow and ground truth motion flow, respectively.

* acc_strict: percentage of points such that FPFE; < 0.05
or EPE; /| fi|l2 < 0.05.

* acc_relax: percentage of points such that EPE; < 0.1 or

* outlier: percentage of points such that EPE; > 0.3 or
EPE:/Hfz”Q > 0.1.

C. Human Body Segmentation (HBSeg)
C.1. Implementation Details

To address the absence of 3D human body part segmen-
tation datasets based on LiDAR point clouds, we cre-
ate a synthetic dataset of 1 million LiDAR human point
cloud instances, named LiDARPart-Human, which uses the
AMASS dataset for 3D human meshes and simulates Li-
DAR scans from various perspectives and distances (Fig-
ure. 2). These scans incorporate random occlusions and
noise to reduce the gap between synthetic and real data.
The SMPL mesh vertices, known for their ordered and reg-
ular structure, provide 24 human body part labels, but due
to the sparsity of LiDAR point clouds, we simplify these to

Table 2. Human Body Segmentation (HBSeg) Results on LiDARPart-Human.

head | left-arm | right-arm | up-body | low-body | upleft-leg | upright-leg | lowleft-leg | lowright-leg | mIoUf
PointNet [15] 88.2 51.2 46.6 52.1 62.6 45.8 36.2 67.4 60.2 56.7
PointNet++ [16] | 88.6 69.5 69.9 65.4 82.2 82.7 82.5 89.1 89.4 79.9
PointMLP [12] 92.0 76.1 75.2 76.7 88.0 86.3 85.8 92.8 92.3 85.0
PointNeXt [17] 95.1 82.7 81.9 83.1 91.9 91.2 90.8 96.1 96.0 89.9

Table 3. Supplementary Comparison Experiments on HuCenLife [23]. "DM?” stands for "Dynamic Method,” indicating whether it is a
method used for modeling dynamic point cloud videos. For the static methods, which are designed for processing static point clouds,
we apply them on each frame of the point cloud sequence and then fuse these frame features after the encoder network by element-wise
adding. "SL” stands for ”Self-learning”, signifying whether the method employs a self-learning mechanism.

hum-inter

DM SL lift carry move pull_push sco-bal fitness entertain sports bend-over sit walk-stand mAcc
PointNet [15] X | X | 455 | 488 | 333 84 59.4 2.6 653 493 34.8 292 543 61 473
PointNet++ [16] X | X | 495 | 457 | 356 527 59 6 28.6 4338 412 319 38.8 55 40.7
PointMLP [12] X | X | 485 | 417 | 517 80.1 80.3 36.1 757 60.8 395 54.9 55.8 59.7 58.1
PointNeXt [17] X X 481 | 566 | 341 80 85.6 22,6 50 38 25.1 255 63.1 70.9 50
PCT [7] X | X 397 | 549 | 523 80.2 89.8 9.8 633 73.6 377 62.5 51 75.8 57.6
HuCenLife [23] X X | 45 | 444 | 527 81.2 86.7 23.1 81.2 54.8 417 54.8 532 70 574
PSTNet [5] X 17302 | 226 | 614 64.7 74.6 216 20.8 82.4 39.7 511 36 154 434
PSTNet++ [3] X 318 | 354 | 194 774 52.1 448 65.3 52.8 51.6 438 63 653 50.2
P4Transformer [2] X | 7526 | 441 | 206 83.8 67.5 28.1 354 68.7 50.6 38.8 62.6 63.8 514
PST-Transformer [4] X | 542 | 403 | 234 82.6 785 218 25 51.9 377 68.1 79 745 53.1
PPTr [21] X | 482 | 46 18 79.1 715 20 447 63.7 524 35.6 65.4 70 512
PointMAE [13] X 534 | 531 | 472 84.9 88.8 7.8 714 76.8 39.2 57.9 418 74.2 58
MaST-Pre [15] 328 | 399 | 484 845 874 314 707 59.1 133 517 66.9 05 541
PointCMP [19] 256 | 83 | 562 788 719 78 653 586 52.9 5.1 72.9 195 77
UniPVU-Human 271 | 373 | 571 82.6 84 247 854 52.1 53.9 93.8 673 76.1 618
Left C.2. Dataset and Evaluation Metrics
Close
Similar to LIDARFlow-Human (Section. B), we also estab-
lish a benchmark on LiDARPart-Human and will make it
public. As shown in Table. 2, the evaluation metric for
— LiDARPart-Human is the mean Intersection over Union
& Right (mloU), which is the average of the IoUs calculated for each

Long-distance

B Front b
Medium

Figure 2. We create a synthetic dataset of 1 million LiDAR hu-
man point cloud instances, using the AMASS dataset for 3D hu-
man meshes and simulating LiDAR scans from various perspec-
tives and distances for enhancing the diversity of the samples, so
as to better simulate the distribution of real-world data.

9 main categories: head, left-arm, right-arm, up-body, low-
body, upleft-leg, upright-leg, lowleft-leg, and lowright-leg.
Each LiDAR point is automatically labeled with the nearest
vertex’s body part label.

of the 9 human body parts.

D. The Network Design Details for the Tok-
enizer

As previously mentioned, in the self-learning module, the
motion flow features F' are not fused with the part patches
features P. This design prevents premature leakage of loca-
tion information of masked tokens to the STEncoder. The
network design details for the Tokenizer are illustrated in
Figure. 3. During self-learning, each point of P is mapped
to a feature vector using several shared MLPs. Subse-
quently, max-pooled features are concatenated to each fea-
ture vector. These are then processed through several MLPs
to expand their dimension to C' = 384. During fine-tuning,
the same operation is applied to the motion flow F'. The
features of P and F' are then fused through element-wise
addition. Finally, a max-pooling layer is applied to derive
the part token 7.

Tokenizer in Self-learning Module
P ML st NP i T

Tokenizer in Fine-tuning Module

Figure 3. The network design details for the tokenizer. The pri-
mary distinction between the tokenizer in the fine-tuning module
and that in the self-learning module lies in the integration of the
motion flow features, denoted as F'.

Table 4. Comparative Analysis of Model Parameter Numbers in
Transformer-Based Dynamic Point Cloud Methods.

Num of Params(M)|
Self-learning | Fine-tuning
P4Transformer [2] / 40.37
PST-Transformer [4] / 60.36
PPTr [21] / 120.7
MaST-Pre [18] 140.76 120.66
UniPVU-Human 34.92 22.48

E. Supplementary Comparison Experiments
on HuCenlLife [23]

For more comprehensive and extensive comparisons,
we supplement our comparison experiments on HuCen-
Life [23] with methods specifically designed for modeling
dynamic point cloud videos [2-5, 21]. As can be seen from
Table. 3, although these methods perform better in cate-
gories that require modeling motion features for accurate
recognition (Fitness, Sports, Bend-Over, Walk-Stand) than
static point cloud methods, there is still a significant per-
formance gap compared to our UniPVU-Human. This con-
firms the superiority of our method in capturing human mo-
tion representations. We also compared our method with
self-learning approaches based on contrastive learning [19].
The experimental results demonstrate the superiority of our
self-learning mechanism.

F. Comparative Analysis of Model Parameter
Numbers

Transformer[20]-based methods [1, 7, 10, 24] have
achieved considerable performance in point cloud feature
extraction. However, their large model size typically results
in significant computational demands. As we can see from
Table. 4, the parameter number of other transformer-based
dynamic point cloud methods [2, 4, 18, 21], are several
times greater than that of our UniPVU-Human. Our model
maintains a parameter number of twenty to thirty million in
both the self-learning and fine-tuning stages, which is com-
parable to ResNet-50 [8]. Therefore, our UniPVU-Human
achieves better performance with fewer parameters, mak-
ing it a lightweight and effective model well-suited for real-
world applications.

References

[1] Guangyan Chen, Meiling Wang, Yi Yang, Kai Yu, Li
Yuan, and Yufeng Yue. Pointgpt: Auto-regressively gen-
erative pre-training from point clouds. arXiv preprint
arXiv:2305.11487,2023. 3

[2] Hehe Fan, Yi Yang, and Mohan Kankanhalli. Point 4d trans-

former networks for spatio-temporal modeling in point cloud

videos. In Proceedings of the IEEE/CVF conference on com-

puter vision and pattern recognition, pages 14204-14213,

2021. 2,3

Hehe Fan, Xin Yu, Yi Yang, and Mohan Kankanhalli.

Deep hierarchical representation of point cloud videos via

spatio-temporal decomposition. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 44(12):9918-9930,

2021. 2

[4] Hehe Fan, Yi Yang, and Mohan Kankanhalli. Point spatio-

temporal transformer networks for point cloud video mod-

eling. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 45(2):2181-2192, 2022. 2, 3

Hehe Fan, Xin Yu, Yuhang Ding, Yi Yang, and Mohan

Kankanhalli. Pstnet: Point spatio-temporal convolution on

point cloud sequences. arXiv preprint arXiv:2205.13713,

2022. 2,3

Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and

Panqu Wang. Hplflownet: Hierarchical permutohedral lattice

flownet for scene flow estimation on large-scale point clouds.

In Proceedings of the IEEE/CVF conference on computer vi-

sion and pattern recognition, pages 3254-3263, 2019. 1

[3

—

[5

—

[6

—_

[71 Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7:187-199, 2021.
2,3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770778, 2016. 3

Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Pro-

[8

—

[9

—

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 529-537, 2019. 1

Yahui Liu, Bin Tian, Yisheng Lv, Lingxi Li, and Fei-Yue
Wang. Point cloud classification using content-based trans-
former via clustering in feature space. IEEE/CAA Journal of
Automatica Sinica, 2023. 3

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. In Seminal Graphics Papers: Pushing
the Boundaries, Volume 2, pages 851-866. 2023. 1

Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun
Fu. Rethinking network design and local geometry in point
cloud: A simple residual mlp framework. arXiv preprint
arXiv:2202.07123,2022. 2

Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu,
Yonghong Tian, and Li Yuan. Masked autoencoders for point
cloud self-supervised learning. In European conference on
computer vision, pages 604—-621. Springer, 2022. 2

Gilles Puy, Alexandre Boulch, and Renaud Marlet. Flot:
Scene flow on point clouds guided by optimal transport. In
European conference on computer vision, pages 527-544.
Springer, 2020. 1

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652—-660,
2017. 2

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 2

Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,
Hasan Hammoud, Mohamed Elhoseiny, and Bernard
Ghanem. Pointnext: Revisiting pointnet++ with improved
training and scaling strategies. Advances in Neural Informa-
tion Processing Systems, 35:23192-23204, 2022. 2

Zhiqiang Shen, Xiaoxiao Sheng, Hehe Fan, Longguang
Wang, Yulan Guo, Qiong Liu, Hao Wen, and Xi
Zhou. Masked spatio-temporal structure prediction for self-
supervised learning on point cloud videos. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 16580-16589, 2023. 2, 3

Zhiqiang Shen, Xiaoxiao Sheng, Longguang Wang, Yulan
Guo, Qiong Liu, and Xi Zhou. Pointcmp: Contrastive mask
prediction for self-supervised learning on point cloud videos.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1212-1222, 2023. 2,
3

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 3

Hao Wen, Yunze Liu, Jingwei Huang, Bo Duan, and Li
Yi. Point primitive transformer for long-term 4d point cloud
video understanding. In European Conference on Computer
Vision, pages 19-35. Springer, 2022. 2, 3

(22]

(23]

[24]

Wenxuan Wu, Zhiyuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. Pointpwc-net: A coarse-to-fine network for super-
vised and self-supervised scene flow estimation on 3d point
clouds. arXiv preprint arXiv:1911.12408, 2019. 1

Yiteng Xu, Peishan Cong, Yichen Yao, Runnan Chen, Yue-
nan Hou, Xinge Zhu, Xuming He, Jingyi Yu, and Yuexin
Ma. Human-centric scene understanding for 3d large-scale
scenarios. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 20349-20359, 2023.
1,2,3

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 16259-16268, 2021. 3

