
ActiveDC: Distribution Calibration for Active Finetuning

Supplementary Material

In this supplementary material, we augment our study
with crucial experiments focused on the impact of hyper-
parameter α on refining category-centered information, de-
tailed extensively in Sec. 1. Moreover, Sec. 2 furnishes
additional experimental details regarding the pretraining-
finetuning paradigm and the distributional calibration mod-
ule. Additionally, the details of the code implementation
of Tukey’s Ladder power transformation are described in
Sec. 3. Furthermore, detailed algorithmic descriptions con-
cerning the filtering process are available in Sec. 4.

1. Hyperparameter Tuning
The hyperparameter α in Eq. 8 (in Submission paper),
whose value determines the parameter β in Eq. 7 (in Sub-
mission paper). The parameter β represents the degree to
which the true labeled data acquired through data selec-
tion contributes to the central information of the sample.
The values of α were set based on experimental results as
shown in Tabs. 1 to 3. We design Eq. 8 (in Submission
paper) to provide a good trade-off between clustered center
information and labeled category center information. This
design prioritizes the utilization of cluster center informa-
tion in scenarios with limited labeled data, while empha-
sizing the utilization of labeled category center informa-
tion in situations where sufficient labeled data is available.
The optimization process concerning the hyperparameters
α and ξ presents a dual-stage challenge, although empiri-
cal findings indicate limited fluctuations in their influence
on performance within a favorable range of values. Our
primary focus revolves around assessing the efficacy of the
method rather than hyperparameter optimization. Conse-
quently, while the selected values may not represent the
absolute optimal solution, they are expected to be in close
proximity to it. To speed up the hyperparameter selection
process, an alternative approach involving logistic regres-
sion on the feature data, instead of model finetuning on the
original data, stands as a viable consideration.

2. Implementation Details
In unsupervised pretraining phase, we adopt DeiT-Small
architecture[6] pretrained within the DINO framework[1],
a well-established and effective choice on the ImageNet-
1k dataset[5]. In the data selection phase, the param-
eters denoted as θS are optimized employing the Adam
optimizer[3] with a learning rate of 1e−3 until conver-
gence. In the distribution calibration phase, the unsuper-
vised clustering method and similarity retrieval mechanisms
employed primarily rely on the FAISS (Facebook AI Sim-

Table 1. Tuning α on CIFAR10.

hyperparameter α 0.5 0.6 0.7 0.8 0.9
CIFAR10 (0.2%) 72.9 73.1 73.1 72.6 71.5
CIFAR10 (0.5%) 86.3 86.8 87.3 86.7 85.8
CIFAR10 (1%) 87.8 88.1 88.9 88.9 88.4

Table 2. Tuning α on CIFAR100.

hyperparameter α 0.05 0.06 0.07 0.08 0.09
CIFAR100 (2%) 54.3 54.5 54.6 53.8 53.2
CIFAR100 (5%) 71.5 71.8 71.9 71.2 70.9
CIFAR100 (10%) 73.1 73.8 74.3 74.0 73.8

Table 3. Tuning α on ImageNet.

hyperparameter α 0.10 0.12 0.14 0.16 0.18
ImageNet (1%) 56.3 56.4 56.3 55.1 54.5
ImageNet (2%) 59.8 60.0 60.1 59.4 58.5
ImageNet (5%) 67.3 67.8 68.2 68.0 67.8

ilarity Search) library. Specifically, we employ the GPU-
accelerated variant of K-Means for clustering and cosine
similarity as the similarity metric. We run the clustering
10 times and keep the best centroids. We use a full traversal
search approach in FAISS for efficient retrieval, which is
also GPU-accelerated. In the supervised finetuning phase,
the DeiT-Small model follows the established protocol out-
lined in reference [1]. For the CIFAR10 and CIFAR100
datasets, supervised finetuning involves the use of the SGD
optimizer with a learning rate of 1e−3, weight decay of
1e−4, and a momentum value of 0.9. This procedure runs
on a selected subset of the training data for 1000 epochs,
and utilizes a learning rate schedule characterized by cosine
decay. For the ImageNet dataset, finetuning is performed
using the same SGD optimizer configuration as employed
for CIFAR datasets. To ensure convergence, the finetuning
process spans 1000 epochs when the sampling rate is be-
low 5%, while it requires 300 epochs at a 5% sampling rate.
Throughout the finetuning process, the batch size for train-
ing samples is set at 256, while the batch size for test sam-
ples is configured to 768. Similar to the pretraining phase,
the input images are resized to dimensions of 224×224.
The implementation of supervised finetuning is based on
the official codebase of DeiT.



3. Power Transformation
To make the feature distribution more Gaussian-like, we
first transform the features in Fu using Tukey’s Ladder of
Powers transformation [2]. This step is a prerequisite for the
subsequent generation of features aligned with calibrated
statistics conforming to a Gaussian distribution. Based on
the experimental results, we set the value of λ to 0.5, as
shown in Fig. 5 (in Submission paper). Since the value of
λ in Tukey’s Ladder Power Transformation cannot handle
negative values in some cases, such as λ equals to 0.5, we
need to make minor changes in the code implementation.
For instance, if the value in features is between -1 and 1, we
can start with an offset (e.g. +1) and then apply the trans-
formation. Also, in order not to change the expected value
of the variable, we need to re-scale and offset. The transfor-
mation is formulated as:

x̂ =
√
2(x+ 1)− 1 (1)

The purpose of applying the transformation has been indi-
cated at the beginning of this section, it is to make the dis-
tribution closer to Gaussian distribution, so Box-Cox Trans-
formation, Log-Tukey transformation are also transforma-
tions that can be considered.

4. Feature Filtering
The labeled feature pool is denoted as F l

S . The feature pool
consisting of all the features in Ry is denoted as Fu

G =

{f̂g
y }(f̂g

y ,y)∈Ry
. The extended feature pool Fu

E (Fu
S
⋃
Fu

G )

is also associated with the extended data subset in PEL,
with the corresponding distribution over Fu

E in the feature
space denoted as pfE . The filtering process for generated
features is conducted through a tripartite approach: Firstly,
features already present within the pool of previously an-
notated features are excluded. Secondly, features signif-
icantly deviating from the established category center are
also filtered out. Lastly, any features deemed detrimental
to the overall distribution of the annotated feature pool are
excluded from consideration.

The Earth Mover’s Distance (EMD) metric [4] is em-
ployed as a quantitative measure for assessing the dissimi-
larity between a subset distribution pfE and the overall dis-
tribution pfu . Its application enables the identification and
elimination of generative features that pose detriment to the
overall distribution. The EMD between pfu , pfE is written
as:

EMD(pfu , pfE ) = inf
γ∈Π(pfu ,pfE

)
E

(fi,fEj
)∼γ

[
∥∥fi − fEj

∥∥
2
]

(2)
where Π(pfu , pfE ) is the set of all possible joint distribu-
tions whose marginals are pfu and pfE . The pseudo-code
detailing the feature filtering procedure is accessible in Al-
gorithm 1.

Algorithm 1: Feature Filtering in ActiveDC

input : the labeled feature pool F l
S

output: the generated feature pool Ry

1 foreach (fSj
, ySj

) in F l
S do

// a new feature As Per Eq. 9 (in

Submission paper)

2 fg
y ← FeatureGene((fSj

, ySj
));

// search feature per Eq. 10 (in

Submission paper)

3 f̂g
y ← SearchFeature(fg

y);
// filter redundant features or features

too far offset

4 if f̂g
y in Fu

E or cos(f̂g
y , µy)<cos(f̂g

y , µ!y) then
5 goto line 2

// filter the features harmful to the

overall distribution

6 else if EMD (pfE
⋃

f̂g
y

, pfu) > EMD (pfE , pfu)

then
7 goto line 2
8 else
9 Ry ← Ry

⋃
(f̂g

y , y)

10 end

References
[1] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021. 1

[2] Vaibhav Ganatra. Logarithm-transform aided gaussian sam-
pling for few-shot learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 247–
252, 2023. 2

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[4] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. A metric
for distributions with applications to image databases. In Sixth
international conference on computer vision (IEEE Cat. No.
98CH36271), pages 59–66. IEEE, 1998. 2

[5] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large scale
visual recognition challenge. International journal of com-
puter vision, 115:211–252, 2015. 1

[6] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. In International conference on machine learning, pages
10347–10357. PMLR, 2021. 1


	. Hyperparameter Tuning
	. Implementation Details
	. Power Transformation
	. Feature Filtering



