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Supplementary Material

In this supplemental document we discuss additional qual-
itative results, experimental details and ablations in Section 6,
and end with limitations and future work in Section 7.

6. Experiments

6.1. Additional Qualitative Results

Here we illustrate additional results of novel animation se-
quences and lighting interpolation & extrapolation.

Novel Animations. As our model takes only 3D meshes
as input, it can generate novel controllable animations driven
by different sources. Two different examples are shown in
Fig. 9. In the first example (top 2 rows), an artist-created
blendshape animation is used to drive our model. We show
our result alongside the 3D mesh animation. In the second
example (bottom 2 rows), we drive our model from monoc-
ular video input. Here we track the performance of the
actor using a recent landmark-based 3D facial reconstruction
method [5], and then feed the tracked meshes into our model.
We show our result alongside the original video input. Given
these two examples, we can see that our model can generate
realistic renderings of various novel expressions outside of
the training sequences.

Figure 9. Our method can render novel expressions driven by
performances from different sources, e.g. artistically-created blend-
shape animations (top) or monocular face capture from a mobile
phone (bottom).

Lighting Interpolation and Extrapolation. To evaluate
how the model interpolates and extrapolates novel lighting
directions, we render in Fig. 10 a point light orbiting around
the head within a horizontal plane at a radius of 3 meters,
starting from the left side of the face. As shown in the figure,
our model can smoothly interpolate inside the range of the
training lighting directions (0� to 180�), with coherently
moving shadows and specular highlights. Although our 32
lights are spread out to cover only the frontal hemisphere,
the model can extrapolate well to at least 20� towards the
backside. While we see extrapolation artifacts beyond that,
our model learns to predict reasonable shadow distributions
even directly behind the captured subject.

6.2. Experiment Details

Here we provide further details regarding the quantitative
evaluation in the main text, and a thorough explanation of
how we render images with LatLong environment maps.

Quantitative Evaluation. For the quantitative evaluation
experiment in Section 4.2, we leave out 3 lights for each
subject. Fig. 11 shows the LatLong images of the captured
light probe, where each LED bar is represented with a single
position/direction. Lights used in training are illustrated as
green dots and held-out lights are labeled in red. Note that
we did not leave out any lights on the boundary as TRAvatar
[51] cannot extrapolate outside the training lighting direc-
tions. We also compute the Delaunay triangulation of the
training lights and use barycentric coordinates to evaluate
held-out lights for TRAvatar*, as shown in Fig. 11. Similar
to ReNeRF [50], we optimize per LED-bar intensity during
training. When testing novel lights, we scale the predicted
renders to match the scale of the ground truth images for all
frames before computing the metrics in Table 1. We leave
out the free dialog performance of Subject 1, and a scripted
line of Subject 2 and Subject 3 as the validation set for novel
performances. All numbers in Table 1 are computed in linear
RGB space.

Rendering with LatLong Environment Maps. When
rendering novel environment maps, our model follows the
approach of image-based relighting. More specifically, we
downsample the LatLong into uniformly distributed direc-
tions, render each of these directional lights, then compute
a weighted sum in image space, with weights given by the
light intensities. We drop the 10% of the lights with the low-
est intensities to speed up rendering. To avoid extrapolation
artifacts (Fig. 10), we mask out directions that fall into the



Figure 10. Relighting results of a point light orbiting 360� around the head. The top row (0� to 180�) shows our model can interpolate
smoothly within the range of the training lighting directions. The bottom row (180� to 360�) shows our model can extrapolate to at least 20�

on both sides and predict reasonable shadow distributions far outside the training data.

Figure 11. Captured light probe in Latlong format overlaid with
computed triangulation of the training lights. Training lights are
marked with green dots and held-out lights are marked in red.

45� cone whose axis points to the back. For the rest of the
directions in the back hemisphere, we apply an attenuation
term a = cos4 ✓ (a is 1 at the side and 0 at the back) on
their intensities to render smooth environment map anima-
tions. The effective resolution of all environment maps we
use is approximately 256 directions. For more environment
relighting results, please refer to the supplementary video.

6.3. Ablations

In this section, we compare our method with a modified
version that incorporates the spherical codebook proposed
in ReNeRF [50]. Instead of representing the lights as 3D
vectors lk, we use 64D OLAT codes learned from a small
3-layer MLP. Each layer has 64 hidden units. The input light
directions are position-encoded with a 5th-order spherical
harmonics basis. While the differences in overall relighting
quality across multiple frames are hardly noticeable, incor-
porating the learned OLAT codes does improve the shadow
boundaries in some cases. However, it also impairs the spec-
ular reflections on the eyes. We show such an example of a
novel point light relighting in Fig. 12, where the rendering of
our method is on the left, and our method with OLAT codes
is on the right.

Figure 12. Rendering of a novel point light from our method (left)
and our method with learned OLAT codes [50] (right). The learned
OLAT codes improve interpolation of shadows but lead to less
sharp rendering of specular reflections on the eyes.

7. Limitations & Future Work

One limitation of our method is that it does not achieve real-
time performance. It takes about 15s per frame to render
an environment map with 256 directions. As mentioned
in the main text, we capture motion blur in some of our
training frames due to our less expensive setup compared to
other methods [2, 28, 51]. This can lead to blurry rendering
for fast motions such as blinking. However, we show in
Fig. 13 that our model does not overfit to all these blurry
pixels and is able to recover some details lost in the captured
images. Future work could consider modeling motion blur
explicitly to render sharper images. Finally, in Fig. 14, we
show failure examples of our method when extrapolating
to extreme expressions far from the training data (left), and
when the gaze is entangled with the base geometry (right).
For future work, we plan to collect more data, which can
help with expression extrapolation. Currently, our models



Figure 13. We capture motion blur in the training data due to our
low frame rate, which can lead to blurry rendering of fast motions.

Figure 14. Failure cases. Our model breaks when extrapolating to
extreme expressions far from the training data (left). And gazes
cannot be disentangled from the base meshes (right).

are trained with only 10% of the amount of data as compared
to the original MVP algorithm. We also plan to model gazes
explicitly to allow for gaze animation.
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