
Appendix

A. Training and Inference Details
We train the generative model PVD [89] with a batch size

of 128 for 10k iterations, and adopt Adam optimizer with
learning rate 2×10−4. For airplane, we set β0 = 10−5 and
βT = 0.008. For other categories, we set β0 = 10−4 and
βT = 0.01.

In terms of reconstruction model PC2/ CCD-3DR, we
train it with a batch size of 16 for 100k iterations, and adopt
Adam optimizer with a learning rate increasing from 10−5

to 10−3 in the first 2k iterations then decaying to 0 in the
remaining iterations. For all the categories, we set β0 =
10−5 and βT = 0.008.

For the training of BDM-merging, we adopt a similar
strategy as the reconstruction model, except that we reduce
the total iterations to 20k and scale the learning rate sched-
ule accordingly.

During inference, we set the number of denoising steps
as 1000. We divide the denoising process into three distinct
stages, i.e. early (timesteps 1000–872), middle (timesteps
872–128), and late (timesteps 128–0). We conduct our
Bayesian denoising steps in the early and late stages. To
be more specific, every 32 timesteps, a Bayesian denois-
ing step is executed for a duration of 16 timesteps. Subse-
quently, we forward a standard reconstruction process for
16 timesteps, followed by another Bayesian denoising step.

B. Extended Object Categories
Leveraging PVD as our prior model, we follow its set-

tings and adopt official pre-trained weights, which are only
on three categories. Each category is trained with differ-
ent hyperparameters. To further illustrate the effectiveness
of BDM, we add two new categories of ShapeNet-R2N2 in
Tab. A.1.

Sofa Table

Method 10% 50% 100% 10% 50% 100%

CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑ CD↓ F1↑
CCD-3DR 63.20 0.444 47.83 0.482 43.16 0.501 79.41 0.523 77.51 0.520 67.13 0.538
BDM-merging 62.29 0.460 45.18 0.500 41.43 0.517 78.25 0.535 75.94 0.538 65.24 0.560
BDM-blending 61.54 0.471 44.31 0.516 41.94 0.520 74.18 0.547 73.46 0.526 64.56 0.557

Table A.1. Results on two additional categories of ShapeNet-
R2N2, i.e. sofa and table.

C. Alternative Prior Model
To validate the robustness of our proposed BDM, we

explore its performance with alternative generative priors.
Specifically, we replace the PVD-based generative diffu-
sion model [89] with DiT-3D [54], an extension of DiT [58],
which uniquely applies the denoising process to voxelized
point clouds. Unlike the PVCNN architecture [47], DiT-3D
leverages a Transformer-based framework, and therefore we
only experiment on BDM-blending. For proof-of-concept

Input Image Baseline BDM-B (PVD) BDM-B (DiT-3D) Ground Truth

Figure A.1. Visualization of taking DiT-3D as prior compared with
PVD on chairs.

purposes, we take 10% of the chairs on ShapeNet as the
training data for the reconstruction model (CCD-3DR). As
demonstrated in Tab. A.2, BDM brings consistent improve-
ment regardless of the prior model utilized. Also, we show
some qualitative visualizations in Fig. A.1. The results il-
lustrate the effectiveness of our BDM across different gen-
erative diffusion priors.

CD ↓ F1 ↑
CCD-3DR (baseline) 89.79 0.418
+ PVD [89] 79.26 0.441
+ DiT-3D [54] 80.77 0.431

Table A.2. Reconstruction results of taking DiT-3D as prior
compared with PVD, evaluated with Chamfer Distance and F-
Score@0.01.

D. Different Gaussian Noises

Baseline BDM w/ different Gaussian noise inputsImage

Figure A.2. Predictions over different initial Gaussian noise.

One key advantage of Bayesian methods is that it allows
to obtain distributions over predicted outputs, allowing to
measure prediction uncertainties. The uncertainties in dif-
fusion model originate from initial Gaussian noise. To in-
vestigate the correlation between the outputs and different



initial Gaussian noise XT , we evaluate BDM-blending with
10 different initial noise inputs, and report mean and vari-
ance in Tab. A.3. In addition, we visualize a chair sam-
ple in Fig. A.2, featuring consistent valid reconstructions
across different noise inputs despite minor shape differ-
ences. BDM transforms the vertical chair-back to a tilted
and curved one, better aligned with the 2D image.

CD ↓ F1 ↑
CCD-3DR 89.79 0.418

XT ablate 79.61 (0.048) 0.441 (2.2e-5)

Table A.3. Mean and variance w.r.t. different initial Gaussian
noise.

E. Details of Human Evaluation
For each generated 3D point cloud, we render multiple

images of it, as shown in Fig. A.3.

multi-view + fine-grained rendering

Figure A.3. Multi-view rendering.

From the evaluation results, we can see our BDM-M and
BDM-B both outperform CCD-3DR, while the quality of
BDM-M is more favored than BDM-B. However, this supe-
riority of BDM-M is not evident from the CD and F1.

As discussed in [67, 79], CD is susceptible to mis-
matched local density and F1 does not fully address such is-
sue. These metrics may not align with human preference, as
shown in Fig. A.4. Therefore, according to the human eval-
uation, BDM-M yields more visually appealing outcomes
whereas blending has stronger quantitative results, which
confirms the effectiveness of our BDM-M approach.

Ground Truth Baseline
CD 90.83 / F1 0.36

BDM-blending
CD 52.29 / F1 0.46

BDM-merging
CD 62.28 / F1 0.39Image

Figure A.4. Quantitative results vs actual visualization.


	. Introduction 
	. Related Work
	. Method
	. Bayesian Inference with Stochastic Gradient Langevin Dynamics
	. Denoising Diffusion Probabilistic Models
	. Bayesian Diffusion Model
	. Point Cloud Prior Integration
	BDM-M (Merging)
	BDM-B (Blending)


	. Experiment
	. Quantitative Results
	. Qualitative Results
	. Efficiency and Fairness Analysis
	. Ablation Study
	. BDM vs CFG
	. Human Evaluation

	. Conclusion and Limitations
	. Training and Inference Details
	. Extended Object Categories
	. Alternative Prior Model
	. Different Gaussian Noises
	. Details of Human Evaluation



