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6. Introduction
This supplementary material presents: (1) details of ex-
perimental setting and implementation; (2) additional ex-
perimental analysis and quantitative results of the ablation
study of LoDa; (3) more visualization of vision transformer
(ViT) [8] and LoDa.

7. Details of Experimental Setting and Imple-
mentation

7.1. Evaluation Metrics

The detailed definitions of the two performance metrics
(i.e., SRCC, PLCC) we use in this paper are as follows:
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6
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(6)

where T is the number of distorted images, and dt is the
rank difference between the ground-truth quality score and
the predicted score of image t.
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where s̄t and ¯̂st denote the means of the ground truth and
predicted score, respectively.

The detailed definition of the 4-parameters logistic func-
tion for PLCC calculation is as follows:

ỹ′ =
β1 − β2

1 + exp(−(ỹ − β3)/|β4|)
+ β2 (8)

where ỹ is the predicted score, ỹ′ is the predicted score after
correction, and {β1, β2, β3, β4} are the 4-parameters.

7.2. Implementation Details

We implement the model by PyTorch and conduct train-
ing and testing on an NVIDIA RTX 4090 GPU. We first
resize the smaller edge of images to 384, randomly crop
an input image into multiple image patches with a resolu-
tion of 224× 224, then horizontally and vertically augment
them randomly to increase the number of data for train-
ing [53]. Particularly, the number of patches for training
is determined depending on the size of the dataset, i.e., 1
for FLIVE, 3 for KonIQ-10k, and 5 for LIVEC, the number
of patches for testing is 15 for all datasets, and patches in-
herit quality scores from the source image. We create our

KonIQ-10k KADID-10k

CNNs SRCC PLCC SRCC PLCC
DenseNet121 0.931 0.943 0.913 0.917
EfficientNet 0.930 0.942 0.913 0.920
ResNet34 0.933 0.943 0.915 0.921
RepVGG 0.931 0.943 0.928 0.933

ResNet50 (Ours) 0.932 0.944 0.931 0.936
ResNet101 0.931 0.943 0.927 0.934

ConvNeXt-S 0.931 0.944 0.931 0.937

Table 8. Impact of different pretrained CNN architectures.

KADID-10k KonIQ-10k

r SRCC PLCC SRCC PLCC

48 0.929 0.934 0.934 0.945
64 0.931 0.936 0.932 0.944
80 0.923 0.928 0.933 0.945

Table 9. Impact of the latent dimension r. The best performances
are highlighted with boldface.

KADID-10k KonIQ-10k

h SRCC PLCC SRCC PLCC

2 0.929 0.934 0.932 0.944
4 0.931 0.936 0.932 0.944
8 0.929 0.935 0.933 0.944

Table 10. Impact of the number of heads h in cross-attention.

model based on the ViT-B pretrained on ImageNet-21k with
an image size of 224 × 224 and patch size of 16 × 16. We
use ResNet50 [13] pretrained on ImageNet-1k for the CNN
backbone and extract feature maps of the last four blocks as
multi-scale features. we use average pooling to pool multi-
scale features into a spatial size of 7 × 7. The dimension
after the down projection is 64 and the number of heads
used for cross-attention is 4. Moreover, we use AdamW op-
timizer with a weight decay of 0.01 and a mini-batch size
of 128. The learning rate was initialized with 0.0003 and
decayed by the cosine annealing strategy.

All experiments are trained for 10 epochs. By default,
we select the evaluation of the last epoch. For each dataset,
80% images were used for training and the remaining 20%
images were utilized for testing. We repeated this process
10 times for all experiments to mitigate the performance
bias and the medians of SRCC and PLCC were reported.



LIVE TID2013 KADID-10k LIVEC KonIQ-10k SPAQ FLIVE

Method SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

ResNet50 0.933 0.944 0.785 0.829 0.887 0.896 0.822 0.848 0.910 0.922 0.917 0.921 0.556 0.650
ViT-B 0.967 0.973 0.744 0.808 0.889 0.899 0.774 0.800 0.874 0.891 0.918 0.922 0.494 0.538

LoDa 0.975 0.979 0.869 0.901 0.931 0.936 0.876 0.899 0.932 0.944 0.925 0.928 0.578 0.679

Table 11. Performance comparison of LoDa and its CNN, Transformer backbone.

KADID-10k KonIQ-10k

N SRCC PLCC SRCC PLCC

3 0.923 0.929 0.929 0.941
6 0.927 0.933 0.932 0.943
12 0.931 0.936 0.932 0.944

Table 12. Impact of the number of heads h in cross-attention.

8. More Ablation Study and Discussion
8.1. Comparison of LoDa and backbones

The base results of using ResNet50 and ViT-B alone on all
datasets are shown in Table 11. It can be observed that com-
pared to the backbones, LoDa significantly enhances its per-
formance across all these datasets.

8.2. Studies on Diverse CNNs

We conduct ablation studies on several CNNs as shown in
Table 8. Most models are trained on ImageNet-1k, except
for ConvNeXt-S pretrained on ImageNet-21k and finetuned
on ImageNet-1k. The transformer model is fixed to ViT-B
pretrained on ImageNet-21k. We present the CNNs from
top to bottom in ascending order of their performance on
ImageNet Validation. For KonIQ-10k, our method yields
consistent results over various CNNs. For KADID-10k with
more diverse local distortions, superior performance would
require CNN of higher proficiency to extract more local dis-
tortion features. This aligns with the discussion in Sec-
tion 4.5, indicating that the multi-scale distortion features
enhance LoDa’s ability to address local distortions.

8.3. Latent Dimension

Due to the potentially overwhelming number of parame-
ters and computational overhead caused by the large dimen-
sion of ViT [8] (768 for ViT-B), inspired by the concept
of adapters in the field of NLP [17], we propose to down
project the ViT tokens and multi-scale distortion tokens to
a smaller latent dimension r. We study the effect of the la-
tent dimension r on KonIQ-10k [15] and KADID-10k [26]
datasets. Results are shown in Table 9. From the table, we
can observe that on the KonIQ-10k dataset, our model is
slightly affected by the effect of latent dimension r, and on
the KADID-10k dataset, our model performs the best when
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Figure 8. Fourier analysis of features of ViT and LoDa on KonIQ-
10k. (a) Fourier spectrum of ViT and LoDa. (b) Relative log am-
plitudes of Fourier Transformed feature maps. (a) and (b) show
that LoDa captures more high-frequency signals.

r is 64. Therefore, we empirically set r to 64 by default.

8.4. Number of Heads in Cross-attention

We run an ablation study on different numbers of heads in
cross-attention when the latent dimension is set to 64. As
shown in Table 10, when the latent dimension is fixed, the
number of heads in cross-attention has little effect on our
model. Thus, we set the number of heads to four so that our
model performs slightly better on the KADID-10k dataset.

8.5. Number of Interactions

In the paper, we empirically fuse the ViT tokens with multi-
scale features in all of the ViT encoder layers. However,
it’s essential to acknowledge that this choice is a result
of our empirical decision-making process, in fact, we can
fuse them only in part of ViT encoder layers. Thus, we
run an ablation study with different numbers of interactions
Non KonIQ-10k and KADID-10k datasets. In this ablation
study, we distribute the ViT encoder layers into N blocks,
with each block containing L/N encoder layers, where L
denotes the total number of encoder layers. Then, we only
fuse the ViT tokens with multi-scale distortion features in
each block instead of each layer. Results are shown in 12.
It can be observed that our model’s performance improves



with an increased number of interactions. Notably, it is
worth observing that even with just half of the interactions,
our model yields excellent performance outcomes.

9. Visualization of Vision Transformer (ViT)
and LoDa

9.1. Visualization of Fourier Analysis

In the paper, we show the Fourier analysis of features of ViT
and LoDa on the KADID-10k dataset, here we additionally
show the Fourier analysis of full-fintuned ViT and LoDa on
the KonIQ-10k dataset (average over 128 images) in Fig-
ure 8. We can observe the same results on the KonIQ-10k
dataset, it further demonstrates that LoDa captures more
high-frequency signals and show the effect of our proposed
method.

9.2. Visualization of attention maps

In the paper, we show the attention maps of ViT and LoDa,
here we additionally show more attention maps of full-
fintuned ViT and LoDa in Figure 9.
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Figure 9. Visualization of attention maps of features of ViT and LoDa.


