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7. Released Code and Materials
The source code, benchmark, and demonstration materials
of this paper are available at https://github.com/
kyoran/DMR.

8. Environment Details
8.1. Scenarios

Our benchmark features two traffic scenarios: the High-
Beam scenario, where an ego-vehicle experiences varying
lighting conditions while encountering a cyclist, and the
JayWalk scenario, where the ego-vehicle encounters both
stationary and moving pedestrian obstacles intermittently.
Moreover, the benchmark includes extreme weather condi-
tions (Midnight and Hardrain) that can cause RGB camera
failure or excessive noise in DVS cameras. Fig. 8 illus-
trates the scenarios under different weather conditions. To
provide readers with a comprehensive view of the scenar-
ios, the first and second columns show the Bird’s Eye View
(BEV) and Third Person View (TPV), respectively, under
ideal lighting conditions. BEV and TPV are not used in the
experiment. They are displayed solely for the purpose of
facilitating a better understanding of this environment. The
third and fourth columns display the original perception of
the vehicles, which consist of RGB frames and DVS events.

Event-based cameras are typically sensitive to high-
speed moving objects. When there are stationary or low-
speed obstacles, event-based cameras fail to provide a suf-
ficient number of events as essential perception signals.
Low-speed or stationary obstacles are typically pedestrians,
whose intention is hard to capture and predict, thus lead-
ing to vehicles being in a dilemma. Especially in low-light
or block-the-view scenarios, pedestrians are difficult to be
long-term tracked. We denote by ‘JayWalk’ (JW) the sce-
nario that heightens the need for safety maneuvers in ad-
vance based on visual pedestrian signals captured in sparse
time slices. Specifically, JW contains two jaywalking re-
gions in 20-22m and 100-102m ahead of the ego-vehicle,
which simulates the low-speed and different-size pedestri-
ans. In this scenario, we set two pedestrians in each jay-
walking region to directly cross the road from left to right
and from right to left, respectively, regardless of the dis-
tance between the vehicle and themselves. The JW scenario
under different weather conditions are illustrated in Fig. 8a.

Changes in illumination can cause significant fluctua-
tions in the decision-making of visuomotor autonomous ve-
hicles. Event-based cameras have a high dynamic range

(120 dB), far exceeding that of frame-based cameras (60
dB). If approaching vehicles using their high beams, the
intense oncoming headlights is challenging to the frame-
based cameras, causing a flash of overexposure or underex-
posure. We denote by ‘HighBeam’ (HB) the scenario that
simulates this phenomenon of sudden intensity changes.
Specifically, HB contains three opposite vehicles which turn
on high beams, and one slow-moving cyclist in front of the
ego-vehicle. Frequent intensity changes cause significant
differences in sequential perception frames, thus resulting
in abnormal faults in the visuomotor decision. The HB sce-
nario under different weather conditions are illustrated in
Fig. 8b.

8.2. Reward Setting

The ego-vehicle’s objective follows the common setup as in
[21, 48], aiming to drive as far as possible without collisions
within 500 steps. Therefore, the reward function is slightly
modified to align with our challenging scenarios and de-
signed as follows:

rt = v⊤egoûlane ·∆t−λc ·collision−λb ·brake−λs ·|steer|
(17)

where vego is the ego-vehicle’s velocity vector, ûlane is the
unit vector of the lane corresponding to the location and
heading of the ego-vehicle, and ∆t is the simulation interval
(i.e., 1

20Hertz s). In this reward function, the first term is to
encourage the ego-vehcile to drive along the lane as far as
possible. The second, third, and fourth term penalize the
collision, extra brake, and excessive steering, respectively.
The trade-off coefficients λc = 10−3, λb = 0.1, and λs =
0.1 are used to balance these penalties.

9. Additional Implementation Details
9.1. Network Architecture

As shown in Fig. 9a, we annotate the symbols mentioned in
the paper onto the framework diagram. These symbols can
be classified into three distinct groups:
• Original perception observation input: RGB Frames
{orgbt }t∈K, DVS Events {odvst }t∈K, and the concatena-
tion of RGB Frames and DVS Events{st}t∈K.

• Features in the latent space: RGB noise {hrgb
t }t∈K, DVS

noise {hdvs
t }t∈K, co-feature {zct}t∈K, RGB complete-

ness feature {zrgbt }t∈K, and DVS completeness feature
{zdvst }t∈K.

• Predicted values from the decoders: Predicted state at

https://github.com/kyoran/DMR
https://github.com/kyoran/DMR
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(a) JW scenario under Midnight and Hardrain weather conditions.
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(b) HB scenario under Midnight and Hardrain weather conditions.

Figure 8. Illustration of the proposed Carla autopilot benchmark. (The first and second columns show the Bird’s Eye View (BEV) and Third
Person View (TPV) under ideal lighting conditions, which are not utilized during the experiment. They are presented solely to enhance
comprehension of this environment. The third and fourth columns are perceived observations.)
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Figure 9. Detailed network architectures and corresponding symbols in Fig. 2.

next time step {ẑct+1}t∈K, and predicted reward at cur-
rent time step {r̂t}t∈K.
Fig. 9b illustrates the encoder details in the three

branches, where the numbers in “Conv” indicate the convo-
lutional kernel size, stride, and padding, respectively. The
encoders in these branches share the same structure, ex-
cept for the input observation dimensions. The left and
right branches output RGB noise {hrgb

i }t∈K and DVS noise
{hdvs

i }t∈K, respectively, while the intermediate branch out-
puts co-features {zci }t∈K. By combining these outputs (op-
erations ⊕ in Fig. 9b, we can obtain the modality-specific
completeness feature for RGB and DVS.

Fig. 9c showcases the decoder structure for the modal-
ity completeness constraint, where “ConvT” represents the
transposed convolution module, and the numbers have the
same meaning as in “Conv”.

Fig. 9d displays the structure of the task-relevant predic-
tive head. It is important to note that for these prediction

heads, we utilized two tractable losses from DeepMDP [13]
in this paper, which involve predicting the next-step co-
features and the current-time reward. Therefore, the pre-
dictive head requires the action as input.

We further illustrate the details of the four models used in
the ablation experiments (Sec. 5.3.1) in Fig. 10. The types
of learning constraints in DMR can be summarized as Aux-
iliary Learning (AL) and Reinforcement Learning (RL).
This helps readers understand the individual roles of each
module we designed. In Fig. 10a, the RGB and DVS modal-
ities are concatenated at the input level and pass through
the encoder to obtain hidden features. These features are
then constrained by the auxiliary tasks and reinforcement
learning of DeepMDP. In Fig. 10b, two branches are used,
with RGB and DVS inputs respectively. The hidden fea-
tures from each branch are then constrained by DeepMDP.
In Fig. 10c, a structure similar to Fig. 10a is added as the
middle branch, and the features from all three branches are



Observaiton
Embedding

ALAL

RLRL

Policy
Projection

Value
Estimation

Encoder

DVSRGB
C

(a) M1: 1 Branch

ALAL

RLRL

RGBDVS

EncoderEncoder

C

(b) M2: 2 Branch

RGBDVS

Repel Repel ALAL

RLRL

EncoderEncoderEncoder

C

(c) M3: +Repel

Repel Repel

Re
c Rec

RGBDVS

ALAL
RLRL

EncoderEncoderEncoder

C

(d) M4: +Rec

Figure 10. Summary of network architectures of the four ablation models in Tab. 2. (AL: Auxiliary Learning, RL: Reinforcement Learning)

Type Attribute Value Description

RGB
cameras

image size 128, 128 Image height and width in pixels.
rendering hertz 20 RGB frames are captured at a frequency of 20 times per second.

fov 60 Horizontal field of view in degrees.
exposure bright 11, 20 Minimum and maximum brightness for automatic exposure.

exposure speed 1, 3 Speeds at which the adaptation occurs when transitioning from a bright to
a dark environment, and vice versa.

blur amount 1 Strength of motion blur.
blur max
distortion 0.8 Max distortion caused by motion blur. Percentage of screen width.

blur min object
screen size 0.4 Percentage of the screen width that objects must possess in order to have

motion blur. A lower value indicates a reduction in draw calls.
lens flare
intensity 0.2 Intensity for the lens flare post-processing effect.

shutter speed 100 RGB camera shutter speed in seconds.

DVS
cameras

image size 128, 128 Image height and width in pixels.
rendering hertz 500 DVS events are captured at a frequency of 500 times per second.

fov 60 Horizontal field of view in degrees.

Q 0.2 The positive and negative thresholds linked to changes in the brightness of
individual pixels.

Qσ 0.1 White noise standard deviation for positive and negative events.
logarithmic True Whether to work in the logarithmic intensity scale.

Depth
cameras

image size 128, 128 Image height and width in pixels.
rendering hertz 20 Depth frames are captured at a frequency of 20 times per second.

fov 60 Horizontal field of view in degrees.
logarithmic True Logarithmic depth is employed for improved illustration of closer objects.

LiDAR
sensors

image size 128, 128 LiDAR point cloud data is projected onto a top-down perspective view.
rotation freq. 20 Rotation frequency.

fov 10, -30,
360 Angles of the highest, lowest laser, and horizontal field of view in degrees.

channels 64 Number of lasers.
range 100 Maximum distance of all lasers in meters.

points per sec. 250,000 Points generated per second by all lasers.

Table 5. The settings of multi-modality cameras.

constrained by Repel in the latent space. The features from
the middle branch are also used for DeepMDP constraints.
In Fig. 10d, additional constraints are applied to ensure the
completeness of each modality’s features. This means that

the decomposed features can be reconstructed back to their
respective modality information through the ⊕ operation.
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Figure 11. Alternative SNN-based DVS backbone structure.

Hyperparameter Value

Input
dimension

RGB frame 2× 128× 128
DVS frame 2× 128× 128

DVS voxel grid 5× 128× 128
Depth frame 1× 128× 128
LiDAR BEV 1× 128× 128

Action repeat 1
Frame skip 1
Frame stack 3

Initial sampling steps 1000
Maximum rollout steps 500

Number of training steps 110,000
Number of eval episodes 50

Replay buffer size 10,000
Initial α in SAC 0.01

Optimizer Adam
Batch size 32

Actor learning rate 10−4

Critic learning rate 10−4

α learning rate 10−4

Encoder learning rate 10−4

Decoder learning rate 10−4

Table 6. Full hyperparameter list used in DMR.

9.2. Multi-Modality Observation Details

Carla stands out as one of the few autonomous driving
simulators that offers support for a rich set of scenarios
with varying lighting and weather conditions. Carla also
supports the generation of asynchronous events and RGB
frames simultaneously. In Carla, DVS events are generated
by utilizing the ESIM event camera plugin at a frequency
of 500Hz. These events are subsequently transformed into
asynchronous event streams. In order to create more authen-
tic autonomous driving scenarios, we made minor modifica-
tions to the default parameters of the RGB and DVS cam-
eras, including adjustments to exposure and motion blur.
For precise details regarding the parameter settings, please
consult Tab. 5. Notably, DVS events and RGB frames are
synchronized and aligned at a rendering rate of 20 hertz.
This allows us to precisely preprocess fixed-interval DVS
events into a DVS voxel grid. Additionally, to assess the ef-
ficacy of our approach, we offer various modality combina-
tions, such as RGB+Depth and RGB+LiDAR. The specifics
of Depth and LiDAR are also provided in Tab. 5.

Methods Runtime (ms) Params (M)

TransFuser 11.716 3.971
EFNet 8.507 4.129
FPNet 8.411 4.192
RENet 9.127 5.850

DMR Test 5.232 1.464
Train 10.059 4.342

Table 7. Model statistics of multi-modality methods.

9.3. Network structure of alternative DVS backbone

As discussed in Sec. 3, we modify the backbone in the
DVS branch by employing an advanced SNN structure us-
ing SpikingJelly [9], instead of the conventional 4-layer
CNN structure. The detailed SNN structure is provided
in Fig. 11. Due to the spike-based information flow (0 or
1) between layers, information loss typically accumulates
as the network deepens. Therefore, we utilized cross-layer
connections to compensate for this loss in our 2-layer SNN
structure. Integrate-and-Fire (IF) neurons are used to gen-
erate spikes after spiking convolutional operations (Spike-
Conv). k and s represent kernel size and step of Spike-Conv.
The output dimension remains consistent with the previous
4-layer CNN structure.

9.4. Hyperparameter Settings

A full list of hyperparameters in DMR is provided in Tab. 6.

10. Additional Experiments
10.1. Model statistics

In our framework, the RGB and DVS branches function
as auxiliary components, augmenting the learning capac-
ity of the intermediate branch. Consequently, during test-
ing, these branches can be omitted, as illustrated by the
dashed boxes in Fig. 2, rendering our architecture more
lightweight. We present the runtime and model parame-
ter statistics of multi-modality methods in Tab. 7. We run
these methods on an Nvidia GeForce RTX 4080 for 100
iterations, reporting the average runtime in milliseconds.
The results indicate that TransFuser uses the most runtime,
despite having fewer parameters. This is mainly because
TransFuser fully exploits the advantages of TransFormer ar-
chitecture by adaptively learning self-attention scores [6],
which greatly reduces parameters but significantly increases
computational complexity. Other SOTA methods employ
interactive modality fusion modules that introduce redun-
dant parameters. In contrast, DMR does not explicitly em-
ploy the self-attention technique but still achieves reason-
able CAM mappings with SOTA performance. In DMR, the
RGB and DVS branches are auxiliary branches, which are
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Figure 12. Additional analysis of CAM based on DMR.

used to enhance learning a better representation of the inter-
mediate branch. As a result, these branches can be omitted
in the test phase. In summary, DMR shows a significant
reduction in both runtime and parameters when testing.

10.1.1 Additional CAM examples

From Fig. 12, it is evident that DVS noise captures the
presence of the puddle and raindrops behind the bicycle,
whereas RGB noise encompasses a broader range of areas,
including the left-side vehicle, right-side buildings, the pud-
dle beneath the bicycle, and parts of the road. Conversely,
co-features have the ability to concentrate more on decision-
relevant regions, such as the left-side vehicle, the cyclist di-
rectly ahead, and the buildings on the right. It is important
to note that RGB noise contains certain objects that are rele-
vant to the task at hand, such as the left-side vehicle. Due to
its extensive coverage, RGB noise exhibits higher discrim-
inability compared to co-features. Consequently, it does not
significantly impact the extraction of co-features.

We visualize class activation maps (CAM) of sev-
eral SOTA methods, including our own method DMR, in
Fig. 13. Fig. 13 expands on Fig. 6 in the main text. It is
clear that the current SOTA fusion methods encounter dif-
ficulties in distinguishing noise from task-relevant informa-
tion via TD constraint. These SOTA methods strive to im-
plicitly separate noise from valuable information and align
features across various modalities. In contrast, our method
DMR can explicitly separate different types of information
and extract combined task-relevant features.

Fig. 14 illustrates a vehicle with high beam headlights
approaching from a distance to near in the opposite lane
at three different time instances, Time #1, #2, and #3. It
is clear that the RGB noise emphasizes the vehicle’s high-
beam headlights and the buildings on the right, whereas
the DVS noise focuses on the dense event region on the
right. Both types of noise contain a substantial amount
of task-irrelevant information, covering unnecessary broad
areas. In contrast, the co-features generate a more fo-
cused area that is relevant for RL by excluding irrelevant

Metrics RGB DVS RGB+DVS

SAC only SAC+DMR

DT 36±10 90±36 213±18
ER 16±5 49±27 180±28

Table 8. Performance comparisons with different RL baselines
under JW-Midnight.

Metrics RGB DVS DRFuser DMR

RMSE 1.31705 2.10519 1.62361 1.00223
MAE 0.46748 0.44107 0.99732 0.37352

Table 9. Performance comparisons on the DDD20 dataset.

regions. These areas precisely cover the vehicle on the op-
posite lane and the right roadside, which are crucial cues
for driving policies. The variations in CAM closely mirror
the alterations in the real scene throughout the entire pro-
cess (i.e., Fig. 14a→Fig. 14b→Fig. 14c). When the vehi-
cle approaches, the RGB noise broadens due to illumination
changes, and the co-features focus more on the vehicle. In
co-features, there is also a gradual increase in emphasis on
the left roadside, and the CAM more uniformly covers the
right roadside.

10.1.2 Additional ablations

In Tab. 8, we observe that our method can be treated as
a plug, capable of enhancing the performance of single-
modality baseline RL (SAC [14, 15]).

Besides, as mentioned in Sec. 5.1, we conduct exper-
iments on a real-world offline dataset DDD [55], specifi-
cally aimed at validating the performance of offline learn-
ing. This part serves as supplementary validation and can be
disregarded if deemed unnecessary. DDD dataset exhibits
substantial variations in weather and illumination condi-
tions. The selection and partitioning of the training and
testing sets, as well as the preprocessing of DVS’s bin-
size, can significantly influence the results. For instance,
despite both methods in DDD [55] and DRFuser [56] em-
ploying a similar ResNet backbone network, a notable
disparity in their outcomes is observed. Owing to the
absence of specific details regarding the partitioning of
training and testing sets or hyperparameters and prepro-
cessing method by DRFuser, we replicated their findings
using their source code and our own dataset partition-
ing as outlined in Tab. 9. We specifically select record-
ings (rec1500329526, rec1500394622, rec1501292394,
rec1501292394, rec1498392691, and rec1498658145) and
preprocess them using a binsize of 0.05 seconds. The train-
ing and testing ratio is 8:2. The training set comprises 9,824
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Figure 13. CAMs under different illumination conditions.
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Figure 14. A long-sequence demonstration of CAM under HB-Hardrain scenario.



image pairs, while the test set consists of 2,456 image pairs.
We utilize root mean square error (RMSE) and mean abso-
lute error (MAE) to assess performance. Notably, our re-
sults reveal an improvement compared to single-modality
models and surpass the performance achieved by DRFuser.

11. Future Direction
DMR is a promising multi-modality visual fusion frame-
work combing RGB frames and DVS events that has the po-
tential to improve the efficiency of RL. However, in the con-
text of existing autonomous driving scenarios, commonly
used sensors such as LiDAR, Radar, and depth cameras
are already well integrated into current autonomous driving
systems. DMR falls short in effectively handling more than
two modalities. Consequently, when dealing with more than
two modalities, two urgent problems arise: 1) the extrac-
tion of complementary features between modalities to form
combined task-relevant features, and 2) the elimination of
noise within each modality. Furthermore, we have observed
that visual reinforcement learning lacks pixel-level super-
vision, leading to low stability in decision-making perfor-
mance. This issue becomes even more pronounced in multi-
modality scenarios. Therefore, we propose that studying
stability in multi-modality visual RL from the perspective
of removing modality noise and extracting task-relevant in-
formation through collaboration is a feasible approach. Our
future research will focus on exploring the generalization of
modalities, the application capabilities, and the decision sta-
bility in order to fully harness the potential value of multi-
modality visual information in RL.
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