Efficient and Effective Weakly-Supervised Action Segmentation via
Action-Transition-Aware Boundary Alignment

Supplementary Material

Al. Details of Temporal Network

As the recent works [3, 12] have pointed out, the vanilla
self-attention mechanism is not suitable for action segmen-
tation task, since it is hard to be learned to focus on mean-
ingful temporal positions over a very long video. Hence, we
replace the vanilla self-attention with a pyramid hierarchical
local attention as in [12] to achieve a local-to-global learn-
ing pattern which is similar to CNNs. Specifically, each
frame only performs self-attention with the frames in a lo-
cal window centered at itself, and the window size increases
in the deeper layers. The radius of the window is set to 2/ ~1
in the [-th (beginning from 1) encoder layer.

A2. Construction of Pairwise Similarity Ma-
trix

In the class-agnostic boundary scoring step of our Action-
Transition-Aware Boundary Alignment (ATBA), a pairwise
similarity matrix 'Y e R¥"*v" is calculated within the
local window with size wP centered at ¢, from the model
output P:

I‘Etg) =1 = 2IS(Pings (1,5) Pinav(8.5))» 1 < 65 < w0,
P (1)
ind"(t,i) =t — 5 l+i-1,

where ind®(t, ) is the index transform from the index i of
the local window centered at ¢ to the global timestamp in-
dex, JS(-, -) is the Jensen—Shannon divergence and Dindv (¢,7)
is the class probability distribution of the frame at times-
tamp ind®(t, 7). I‘l(tJ) represents the output similarity be-
tween ind" (¢, 7)-th and ind"(¢, j)-th frames, of which the
range is [—1, 1].

A3. Details of Action Transition Alignment

To help better understand the action transition alignment
algorithm in our ATBA, we provide the pseudo code in
Alg. Al. The algorithm consists of three stages, i.e., initial-
ization (Line 1-20), calculation by dynamic programming
(Line 21-30), and backtracking (Line 31-45). The middle
stage is stated in the main paper.

- Initialization. The first row and the first two columns
of the cumulative cost matrix D can not be calculated via
the recursive equation, and need to be directly initialized
before the computation. The rules for the initialization are
following:

* For the first column, the path through (%, 1) means the k-
th candidate is matched with the first empty symbol, i.e.,
the first k candidates are all dropped. However, there are
only K — M + 1 candidates can be dropped, so a valid
path cannot pass through the last M — 1 positions of the
first column, so their values are set to oo (Line 2-9).

* The situation in the second column is similar to the first
column, where a path through (k, 2) means that the k-th
candidate is matched with the first transition. To ensure
that the remaining M — 2 transitions can be matched, at
least the last M — 2 candidates cannot be matched with
the first transition. Hence the values of the last M — 2
entries of the second column are set to oo (Line 10-17).

* For the first row, as mentioned in the main paper, only
(1,1) and (1, 2) are valid, so the values of other entries in
the first row are set to co (Line 18-20).

* The remaining valid positions can be initialized with the
values of corresponding entries in A, as these positions
are all in the first two columns, and so relevant to at most
one transition matching without accumulating multiple
costs.

- Backtracking. After filling the matrix D, we find out the

optimal boundary set B (i.e., an alignment path) from it us-

ing backtracking. Clearly, any valid path has exactly one
point in each row, meaning that each candidate is matched
with one symbol (transition or ¢). As mentioned in the
main paper, the end position of the optimal path is one
of (K,2(M — 1)) and (K,2(M — 1) 4+ 1) depending on

whose D value is minimal (Line 35 in the first loop, i.e.,

1 = K). The backtracking starts from this end position, and

runs from bottom to top until the first row. The Line 34-39

calculate the column position in current row ¢ based on the

determined position in the next row (i.e., next point in the
path). Similar to the forward process, if the column posi-

tion j of the next row ¢ + 1 is odd, i.e., the candidate b;

is dropped, then in current row ¢, candidate b; can be either

dropped (new-j = j) or matched with the previous tran-
sition (new-j = 7 — 1) depending on the cumulative cost

(Line 34-36). The meaning of Line 37-39 (j is even) is sim-

ilar. If the point of current row is matched with a transition,

we add it into B (Line 40-42).

A4. Additional Training Details

During training, the batch size is 32 and the AdamW
[7] optimizer is adopted. = We train the model for
400/300/300 epochs for Breakfast [4], Hollywood [1] and
CrossTask [13], respectively, of which the first 40 epochs



Algorithm A1l: Action Transition Alignment
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Input: Candidate boundary set B= {bk}i{:l; Cost

matrix A € REXGM-1)+1)
/+* Initialize the cumulative cost
matrix D
D + RandomMatrix € R¥*GM-1)+1).
/+ Initialize the 1st column
for i < 1to K do
ifi <K — (M —1) then
‘ D;1 +— A
end
else
‘ Di,1 <— 00;
end
end
/+ Initialize the 2nd column
for i + 1to K do
ifi <K —(M—1)+1then
‘ D; o A2
end
else
‘ D; 5 < o0;
end
end
/+ Initialize the 1st row
for j < 3to2(M — 1)+ 1do
‘ Dlﬂj — 00,
end
/+ Dynamic programming
for i < 2to K do
for j <~ 3to 2(M — 1)+ 1do
if j is odd then

end
else

end

end
end
/+ Backtracking
Initialize the optimal boundary set B = ¢;
je20M—-1)+1;
for i < K to1do
if j is odd then
‘ new_j < argming; ;_13(Dij, Dy j-1);
end
else

end

if new_j is even then
| Add b; into B;

end

7] < new-_j;

end
Reverse B;
Output: Optimal boundary set B

| Dij <+ Aij+min(D;_1;,Di ;-

*/

*/

*/

*/

*/

1);

| Dy Aij+min(Di-1;-1,Di1,-2);

*/

‘ new_j < argming;_q j_oy (Dij—1,Dij—2);
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Figure Al. The Effect of (a) the size of class-agnostic boundary
pattern template w®, (b) the size of action-transition pattern tem-
plate w?, (c) A, which controls the upper bound of the number of
candidate boundaries, and (d) p, which controls the size of non
maximum suppression (NMS) area. The case of A = oo means
that the candidate selection process terminates only when all re-
maining timestamps are invalid. Experiments are all conducted on
the Breakfast.

are the first stage. The initial learning rate is set to Se-4.
The cosine annealing strategy [6] is used only for the sec-
ond stage to lower the learning rate to 1/100 of the initial
value finally, while the warmup strategy is used for the first
10 epochs of both two stages, beginning from 1/100 and
1/10 of the initial learning rate, respectively.

AS. Detailed Sources of Results

In Table 1 of the main paper, some results are not reported
by the original paper, and the detailed sources are as fol-
lows:

- Breakfast. The MoF results with standard deviation of
ISBA [2], NN-Viterbi [9] and CDFL [5] are from [10]. The
MoF-Bg, IoU and IoD results of MuCon [10] are from [11].
- Holloywood Extended. The IoU result of MuCon [10]
are from [11].

- CrossTask. All the results of NN-Viterbi [9] and CDFL
[5] are from [8].

A6. Analysis of Hyper-parameters

- Effect of w”. Fig. Al(a) shows the effect of the size of
class-agnostic boundary pattern template w®. The model
performs bad with too small w®, possibly because it is more
susceptible to noise interference. On the other hand, the
large w® can also lead to performance decrease due to the
poor ability of capturing local changes.



- Effect of w?. The effect of the size of action transition pat-
tern template w? is also shown in Fig. A1(b). Our method is
insensitive to it over a wide range (at least 23-29). Note that
these feasible values are much higher than that of w®, since
the action transition scoring aims to capture two adjacent
segments which both lasts for a period of time.

- Effect of \. We investigate the effect of A in Fig. Al(c),
which controls the upper bound of the number of candidate
boundaries. Note that A = 1 is equivalent to not applying
action transition alignment (i.e., Exp.1 of the ablation study
on ATBA in the main paper), so the performance is poor.
When A > 1, the performance can be maintained at a high
level and keep stable as the number of candidates increases,
since the additional candidates may be unambiguous non-
boundary points and have little effect.

- Effect of . Fig. A1(d) shows the effect of u, which con-
trols the size of non maximum suppression (NMS) area.
Our ATBA prefers relatively small NMS area, since the
large NMS area will lead to missing the transitions involv-
ing short segments.

A7. More Qualitative Results

To help more intuitively understand the advantage of our
method, we provide more qualitative results on three
datasets: Breakfast [4], Hollywood [1] and CrossTask [13]
in Fig. A2. Our method is significantly more accurate in
locating actions than MuCon [10] and TASL [8]. Note that
in Fig. A2(e), there is indeed a shot of espresso in the video
(the 2nd picture, but without a pouring action) after action
“Pour Milk” (the 1st picture), so the activation on action
“Pour Espresso” in our result is not exactly a hallucination
compared to the result of TASL [8].
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