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A. Methods

A.1. Bilinear / Bicubic Interpolation

Bilinear / Bicubic Interpolation estimates the resampled
value as a weighted sum of the 4 (bilinear) or 16 (bicubic)
discrete neighbours around (a, b), which we denote in short
form as ⌊a, b⌉:

Xr(a, b) =
∑

(x,y)∈⌊a,b⌉bi

wxy ·X[x, y], (1)

where wxy are the associated weighting coefficients
based on either a linear (bilinear) or quadratic (bicubic) in-
terpolation of a and b with respect to the neighbouring co-
ordinates.

For bilinear interpolation:

wxy = |a− x| ∗ |b− y| (2)

For bicubic interpolation, please refer to [4] for detailed
definition.

A.2. Network Structures

We employed a single-layer fully connected layer as the en-
coder for Fq , Fk, and Fv in our experiments. These experi-
ments were conducted on both CNN-based backbones, fol-
lowing the architecture of BasicVSR [3], and Transformer-
based backbones, following the PSRT-recurrent model [8].
Alignment was applied for either first-order or second-order
bidirectional propagation, with a default window size of 2x2
unless explicitly stated.

The detailed network structure for IA-CNN is provided
in Fig. 1, while that for IA-RT is presented in Fig. 2.

For IA-CNN, we adapted first-order bidirectional prop-
agation following BasicVSR [8]. The number of channels
was set to 64, and each propagation branch comprised 30
residual blocks. The IA module had 64 channels, and the
attention module for implicit alignment included 8 heads.
We note that only 0.01M of the increase is due to align-
ment alignment, with the remaining 2.2M coming from the
requirement for feature computation.

For IA-RT, two consecutive second-order bidirectional
propagation blocks were employed, following the PSRT-
recurrent model [8]. The number of channels for embedding
was 120, and each propagation branch contained 18 Multi-
Frame Self-Attention Blocks (MFSABs) [8] with shortcuts
every 6 blocks. The IA module had 120 channels, and the
attention module included 6 heads.

B. Experimental Details

B.1. Alignment Study

For the synthetic data, we partitioned the training videos
from the clean data track of Sintel [1] into 20 training and
3 testing videos, and we present the results based on the
testing set comprising ambush5, market6, and mountain1.

All alignment methods evaluated share a consistent net-
work structure and training parameters. We employed the
Adam optimizer for training, running for 100,000 iterations
at a learning rate of 2e-4, with a batch size of 8.

For alignment studies on the Sintel dataset, we utilized
first-order backward propagation due to the availability of
only backward optical flow ground truth. Each propaga-
tion branch contains 9 MFSABs with shortcuts every three
blocks. The number of channels for embedding is set to
60. The total training iterations are 100,000, and the learn-
ing rate starts at 2e-4, with a cosine learning rate decay to
1e-7 towards the end of training. The batch size remains 8
throughout.

B.2. Comparison with State-of-the-Art:

All experiments were conducted using bicubic 4X down-
sampling. The training dataset includes the REDS [7] and
Vimeo-90K [10] datasets, while the testing dataset com-
prises REDS4 [7], Vid4 [6], and Vimeo-90K-T [10].

For IA-CNN on the REDS dataset, we trained for 300k
iterations using 15 input frames, with a learning rate of 2e-
4 and a cosine learning rate decay to 1e-7. The batch size
was set to 8. Subsequently, we fine-tuned the model on the
Vimeo-90K dataset for 300k iterations using the pre-trained
weights from the REDS training.

For IA-RT on the REDS dataset, we trained for 300k
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Method Param. (M) FLOPs (T) Runtime (ms)

DUF 5.8 2.34 -
RBPN 12.2 8.51 -
EDVR [9] 20.6 2.95 -
VSRT [2] 32.6 1.60 -
VRT [5] 35.6 1.30 -
PSRT-recurrent [8] 13.4 1.50 2020†

IA-RT (ours) 13.4 1.62 2105

Table 1. The comparison of the parameters, FLOPs and the run-
time for VSR models. †The runtime is re-estimated on RTX-
A5000 GPU for fair comparison.

iterations using 16 input frames, with a learning rate of 2e-
4 and a cosine learning rate decay to 1e-7. The batch size
remained 8.

When training IA-RT on the Vimeo-90K dataset, we first
conducted 300k iterations with 14 input frames with flip se-
quence, we then train model on 7 input frames with flip
sequence, using a learning rate of 2e-4 and a cosine learn-
ing rate decay to 1e-7. We initialized the weights using
the model trained on the REDS dataset. The batch size re-
mained 8.

Test results for the REDS model are reported on the
REDS4 dataset, while test results for the Vimeo-90K model
are reported on Vimeo-90K-T and Vid4.

Evaluation metrics: We calculate PSNR and SSIM on the
RGB channel for REDS4 and Y channel for Vimeo-90K-T
and Vid4.
Ablation Studies: For ablation studies on the REDS
dataset, a model with a single second-order bi-directional
propagation block is employed. Each propagation branch
consists of 9 MFSABs with shortcuts every 3 blocks. The
total training iterations are set to 200,000, with a learning
rate initialized at 2e-4 and subjected to a cosine learning
rate decay, reaching 1e-7 at the end of training. The batch
size used for these experiments is 4.

B.3. FLOPS and Runtime Comparison

We conducted an analysis of the FLOPs, as presented in
Tab. 1. The overall complexity of a single IA module is
14.93 GFLOPs with an input low-resolution (LR) frame
size of 180 × 320. In comparison with PSRT-recurrent,
eight propagations with IA are performed per frame on av-
erage. Thus, the FLOPs for Implicit Alignment with Recur-
rent Transformers (IA-RT) is calculated as follows:

FLOPsIA-RT = FLOPsPSRT + 14.93 G×8 = 1.62 T

For a fair runtime comparison, we estimated the infer-
ence time for PSRT-recurrent and IA-RT on the same hard-
ware, namely the RTX-A5000.
B.4. Training Time

The training time on an RTX-A5000 for IA-RT is 6.7
ms/iter for 16 input training frames and 2.6 ms/iter for 6

input training frames. In comparison, the training time for
PSRT-recurrent on RTX-A5000 is 6.4 ms/iter for 16 input
training frames and 2.5 ms/iter for 6 input training frames.

B.5. Different Down-sampling Degradation Com-
parison with PSRT

We add ablation studies on video super resolution for
Blur Down-sampling Degradation (BD) and JPEG and
MPEG Compression Down-sampling Degradation (JPEG-
D, MPEG-D), using data from the REDS official web-
site and models from PSRT and IA-RT trained on REDS
BI-degradation. Our results demonstrate that our method
still outperforms the current state-of-the-art PSRT, although
the performance gap narrows as optical flow accuracy de-
creases. This is attributed to our method’s feature of sub-
pixel information reconstruction, which benefits from pre-
cise optical flow.

BD JPEG-D MPEG-D
PSRT 24.917 23.149 24.619
IA-RT 24.931 23.280 24.635

Table 2. Comparison with PSRT on different down-sample degra-
dation

C. More Visual Comparison
We offer additional visual comparisons in Fig. 3 and Fig. 4.
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Figure 1. Network Structure for IA-CNN.
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Figure 2. Network Structure for IA-RT.
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Figure 3. Visual Comparison on REDS4.



Figure 4. Visual Comparison on REDS4.
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