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Supplementary Material

In the following pages, we present additional experimen-
tal details, results across more matching pipelines, and more
qualitative examples.

6. Experimental Details
Training data. We present a more detailed explanation
of the data generation process. As described in the paper,
the training data is generated by progressively introducing
noise to the ground-truth matching data. Initially, a proba-
bility value, denoted as P , is defined to indicate the likeli-
hood of adding outlier noise to the data. The inlier noise is
then added to the remaining portion of the data (it is unnec-
essary and inappropriate to introduce both types of noise
simultaneously to one match). The probability value P is
uniformly distributed between 0 and 0.95. For the matches,
outlier noise is introduced by randomly selecting points
from the image matching space to replace them. On the
other hand, inlier noise is represented by Gaussian noise,
which is applied solely to the queried point. The charac-
teristics of the inlier noise are controlled by a set of pa-
rameters. Specifically, for a given match m, the two essen-
tial parameters that determine the bias are the radius R and
the angle α. The radius follows an absolute value Gaussian
distribution with a standard deviation of δ, where δ is uni-
formly distributed between 0 and 10. The angle α adheres
to a standard distribution ranging from 0 to 2π. Then, the
offset of a queried point in two directions can be expressed
as:

(xn, yn) = (R · sin(α), R · cos(α)) (13)

It is noteworthy that, even after the addition of noise,
the mean deviation for the ”inliers” within the matching set
remains zero. To prevent the neural network from learning
this bias, a small bias (e1, e2) is uniformly added to these
points. The biases in the two directions are drawn from a
standard normal distribution. Following the incorporation
of these noises, the correspondence set is compared to the
original set, and matches with an error radius exceeding 8
pixels are classified as incorrect matches.

Test settings. In matching pipelines, for SIFT [27] + MNN,
we use the implementation in OpenCV, the parameters of
it are set to default. For SP [10] + MNN, we use the de-
fault settings in its released code. For SP [10] + SG [36],
the the nms radius is set to 3, and the max keypoints
is set to 4096 to make its matching performance better. In
matching refiners, for OANet [49], we use the method it re-

ported in the paper to remove the outliers (tanh + ReLU).
For Patch2Pix [52], we adopt the settings in its paper, set-
ting c = 0.9 for the image matching task and c = 0.25 for
geometric estimation tasks.

7. Additional Results on Homography Estima-
tion

As shown in Tab. 1, we report the combined results on more
matching pipelines for geometric task on HPatches [1]. For
interpretable experimental results, we crop images to a 4 : 3
aspect ratio and scale them to 640 × 480. Homography ma-
trix Ĥ is estimated using RANSAC [15] as the robust esti-
mator, with default parameters. We calculate reprojection
errors for the four corners using both the estimated Ĥ and
ground-truth H. AUC values of corner errors [40] are re-
ported with thresholds of 3, 5, and 10. We report the results
for illumination, viewpoint, and overall, respectively.

8. Additional results of Pose Estimation
As shown in Tab. 2, Tab. 3, we report the combined results
on more matching pipelines for pose estimation [8, 22]. For
outdoor estimation, we select two scenes, ”Sacre Coeur”
and ”St. Peter’s Square” from MegaDepth [22] dataset and
use 1500 pairs of images sampled by [40]. These scenes
are excluded during our training. We estimate relative pose
using RANSAC and evaluate the pose error’s AUC with
thresholds of 5°, 10°, and 20° following [6, 36, 40]. Un-
like [6, 40], we do not apply image scaling for higher pre-
cision. For indoor pose estimation, we use 1500 test image
pairs selected from ScanNet [8] dataset by [40]. We resize
the image size to 640 × 480. Similar to Ourdoor, we report
the AUC of the pose error for thresholds 5°, 10°, and 20°
respectively.

9. Additional Qualitative Results
The visualized experimental results are provided in Fig. 1.
For better observation, the unified size of the image was set
to 640 ×480, the threshold of Patch2Pix [52] is set to 0.5,
and the threshold of FC-GNN is set to 0.9.



Matcher Refiner
Illumination Viewpoint Overall

#Matches
AUC (%, @3, 5, 10px)

SIFT [27] + MNN

Origin 69.4 / 78.3 / 85.9 50.3 / 62.4 / 75.3 59.6 / 70.1 / 80.4 0.84k
OANet [49] 68.3 / 77.9 / 85.7 41.9 / 56.8 / 72.8 54.8 / 67.1 / 79.1 0.39k
Patch2Pix [52] 70.3 / 79.6 / 87.6 40.1 / 53.8 / 70.0 54.8 / 66.4 / 78.6 0.60k
FC-GNN 72.4 / 81.3 / 88.8 51.8 / 63.9 / 77.2 61.9 / 72.4 / 82.8 0.56k

ORB [35] + MNN

Origin 47.2 / 54.0 / 61.6 28.7 / 39.4 / 51.4 37.7 / 46.5 / 56.4 1.24k
OANet [49] 53.5 / 64.2 / 76.0 26.1 / 39.4 / 57.0 39.5 / 51.5 / 66.3 0.41k
Patch2Pix [52] 58.0 / 69.4 / 79.7 30.8 / 44.6 / 61.8 44.1 / 56.7 / 70.5 0.65k
FC-GNN 60.4 / 70.6 / 79.1 40.8 / 53.6 / 67.1 50.3 / 61.9 / 73.0 0.65k

SURF [3] + MNN

Origin 60.8 / 71.5 / 81.1 38.2 / 51.1 / 65.8 49.2 / 61.0 / 73.2 0.83k
OANet [49] 60.9 / 73.0 / 83.8 32.5 / 47.2 / 64.6 46.4 / 59.8 / 74.0 0.36k
Patch2Pix [52] 69.8 / 79.9 / 88.8 38.3 / 52.9 / 69.8 53.7 / 66.1 / 79.0 0.57k
FC-GNN 69.1 / 79.1 / 87.8 47.3 / 60.1 / 74.4 57.9 / 69.3 / 80.9 0.51k

D2Net [12] + MNN

Origin 30.7 / 52.7 / 74.8 7.4 / 19.6 / 42.4 18.8 / 35.8 / 58.2 1.14k
OANet [49] 17.6 / 35.0 / 62.1 2.8 / 10.1 / 28.5 10.0 / 22.3 / 44.9 0.50k
Patch2Pix [52] 70.5 / 81.7 / 90.7 38.9 / 52.8 / 68.9 54.3 / 66.9 / 79.5 1.06k
FC-GNN 75.6 / 84.7 / 92.2 41.7 / 55.1 / 69.8 58.3 / 69.6 / 80.7 1.06k

R2D2 [31] + MNN

Origin 64.8 / 78.0 / 88.6 36.6 / 49.8 / 65.7 50.4 / 63.6 / 76.9 1.59k
OANet [49] 54.2 / 69.5 / 84.3 24.7 / 37.4 / 55.5 39.1 / 53.1 / 69.6 0.94k
Patch2Pix [52] 74.8 / 84.0 / 91.7 38.5 / 51.3 / 66.0 56.2 / 67.3 / 78.5 1.54k
FC-GNN 76.1 / 85.1 / 92.4 44.1 / 56.1 / 69.7 59.7 / 70.3 / 80.8 1.54k

SP [10] + MNN

Origin 61.4 / 74.8 / 87.0 38.0 / 53.5 / 69.8 49.4 / 63.9 / 78.2 0.55k
OANet [49] 46.6 / 64.0 / 80.7 24.2 / 38.2 / 56.7 35.1 / 50.8 / 68.4 0.25k
Patch2Pix [52] 72.9 / 83.0 / 91.4 41.4 / 55.0 / 69.8 56.8 / 68.7 / 80.3 0.51k
FC-GNN 75.2 / 84.4 / 92.0 48.9 / 61.3 / 74.9 61.8 / 72.6 / 83.3 0.49k

SP [10] + SG [36]

Origin 62.6 / 76.4 / 88.1 45.7 / 61.3 / 76.8 54.0 / 68.6 / 82.3 0.61k
OANet [49] 37.4 / 56.5 / 76.2 20.1 / 35.6 / 56.8 28.5 / 45.8 / 66.3 0.14k
Patch2Pix [52] 77.3 / 85.9 / 91.2 42.4 / 56.2 / 72.6 57.0 / 69.2 / 81.7 0.58k
FC-GNN 76.9 / 85.9 / 92.9 57.2 / 69.0 / 81.3 67.0 / 77.2 / 86.9 0.60k

DRC-Net [21]

Origin 95.8 / 96.7 / 98.1 13.1 / 29.4 / 52.2 53.7 / 62.4 / 74.7 1.94k
OANet [49] 95.2 / 95.9 / 97.6 3.5 / 10.3 / 26.0 48.5 / 52.3 / 61.1 0.47k
Patch2Pix [52] 75.2 / 84.5 / 92.0 33.3 / 47.6 / 65.4 53.8 / 65.6 / 78.5 1.87k
FC-GNN 82.6 / 89.0 / 94.3 32.3 / 47.6 / 64.8 56.9 / 67.9 / 79.3 1.93k

LoFTR [40]

Origin 80.4 / 87.5 / 93.5 48.7 / 60.1 / 74.5 64.2 / 74.0 / 83.8 2.68k
OANet [49] 70.7 / 81.3 / 90.2 31.4 / 45.6 / 63.5 50.6 / 63.1 / 76.5 0.91k
Patch2Pix [52] 70.8 / 81.6 / 90.6 40.7 / 55.6 / 71.4 55.4 / 68.3 / 80.8 2.54k
FC-GNN 80.2 / 87.5 / 93.5 52.5 / 64.5 / 76.9 66.1 / 75.8 / 84.9 2.66k

SIFT [27] + LG [24]

Origin 69.7 / 80.4 / 89.7 53.8 / 66.5 / 79.5 61.5 / 73.3 / 84.4 1.45k
OANet [49] 50.0 / 66.4 / 81.8 33.8 / 47.8 / 65.2 41.7 / 56.9 / 73.3 0.34k
Patch2Pix [52] 70.2 / 81.2 / 90.3 39.8 / 54.8 / 72.4 54.6 / 67.7 / 81.1 1.39k
FC-GNN 76.6 / 85.3 / 92.3 56.1 / 68.7 / 81.2 66.1 / 76.8 / 86.6 1.44k

DISK [42] + LG [24]

Origin 65.0 / 77.2 / 88.4 48.0 / 60.8 / 74.5 56.3 / 68.8 / 81.2 2.26k
OANet [49] 42.8 / 59.5 / 77.2 26.5 / 42.0 / 60.7 34.4 / 50.5 / 68.7 0.52k
Patch2Pix [52] 64.4 / 76.5 / 87.6 36.3 / 51.2 / 68.1 50.0 / 63.6 / 77.6 2.18k
FC-GNN 74.9 / 83.8 / 91.5 50.7 / 63.1 / 75.6 62.5 / 73.2 / 83.3 2.26k

ALIKED [50] + LG [24]

Origin 71.7 / 82.2 / 90.8 52.5 / 65.5 / 78.6 61.9 / 73.6 / 84.5 1.14k
OANet [49] 50.0 / 66.0 / 81.6 31.9 / 46.2 / 63.7 40.7 / 55.8 / 72.4 0.27k
Patch2Pix [52] 70.2 / 81.3 / 90.4 38.7 / 53.6 / 70.4 54.1 / 67.2 / 80.1 1.11k
FC-GNN 75.7 / 84.6 / 91.9 56.2 / 68.2 / 80.0 65.7 / 76.2 / 85.7 1.14k

ASpanFormer [6]

Origin 80.0 / 87.3 / 93.4 49.2 / 62.1 / 75.4 64.3 / 74.4 / 84.2 2.76k
OANet [49] 66.8 / 78.9 / 88.8 32.7 / 46.4 / 63.9 49.4 / 62.3 / 76.1 0.68k
Patch2Pix [52] 69.4 / 80.8 / 90.3 39.9 / 54.1 / 70.0 54.4 / 67.2 / 79.9 2.56k
FC-GNN 79.4 / 87.2 / 93.4 53.4 / 65.5 / 78.1 66.1 / 76.1 / 85.5 2.75k

Table 1. Homography estimation on HPatches [1]. The AUC of the corner error in percentage is reported. We mark the best results in
bold.



Matcher Refiner Pose estimation AUC
@5° @10° @20°

SIFT [27] + MNN

Origin 16.67 28.54 42.75
OANet [49] 40.28 57.07 71.00
Patch2Pix [52] 33.54 48.66 62.07
FC-GNN 44.57 60.32 72.78

SURF [3] + MNN

Origin 10.71 21.69 36.14
OANet [49] 32.84 50.62 66.34
Patch2Pix [52] 31.16 47.05 61.66
FC-GNN 40.08 57.26 71.28

ORB [35] + MNN

Origin 2.70 6.50 13.48
OANet [49] 13.72 23.83 36.30
Patch2Pix [52] 15.77 26.80 39.50
FC-GNN 19.17 30.48 42.30

D2Net [12] + MNN

Origin 21.88 37.50 53.49
OANet [49] 15.76 31.06 48.78
Patch2Pix [52] 42.40 57.95 70.42
FC-GNN 44.05 59.10 70.73

R2D2 [31] + MNN

Origin 44.04 61.50 74.77
OANet [49] 33.05 51.69 67.90
Patch2Pix [52] 42.20 58.44 71.58
FC-GNN 48.87 65.70 78.01

SP [10] + MNN

Origin 30.00 45.24 59.29
OANet [49] 31.59 49.30 64.32
Patch2Pix [52] 39.29 54.83 67.27
FC-GNN 45.58 60.92 72.19

SP [10] + SG [36]

Origin 49.13 66.16 79.23
OANet [49] 23.40 40.31 58.36
Patch2Pix [52] 47.32 63.98 77.23
FC-GNN 54.67 71.03 82.65

SIFT [27] + LG [24]

Origin 50.51 67.33 80.45
OANet [49] 23.88 41.62 60.22
Patch2Pix [52] 45.10 61.36 74.40
FC-GNN 52.39 69.57 81.88

DISK [42] + LG [24]

Origin 45.43 63.04 76.92
OANet [49] 23.86 41.01 59.15
Patch2Pix [52] 42.05 59.05 72.84
FC-GNN 50.87 67.86 80.50

ALIKED [50] + LG [24]

Origin 47.51 65.25 78.85
OANet [49] 24.95 41.65 58.71
Patch2Pix [52] 43.27 60.18 73.56
FC-GNN 51.00 68.24 80.78

ASpanFormer [6]

Origin 55.36 71.31 82.90
OANet [49] 37.62 56.74 72.96
Patch2Pix [52] 48.17 64.46 77.25
FC-GNN 56.64 72.43 83.76

Table 2. Outdoor pose estimation. The AUC of the pose error in
percentage is reported. We mark the best results in bold.

Matcher Refiner Pose estimation AUC
@5° @10° @20°

SIFT [27] + MNN

Origin 4.26 10.10 18.11
OANet [49] 5.88 13.58 23.22
Patch2Pix [52] 6.09 14.07 24.62
FC-GNN 7.88 16.87 27.59

SURF [3] + MNN

Origin 4.02 10.71 20.46
OANet [49] 7.14 16.68 29.54
Patch2Pix [52] 8.34 18.98 32.48
FC-GNN 10.67 22.30 35.46

ORB [35] + MNN

Origin 1.54 4.63 9.92
OANet [49] 4.22 10.05 18.56
Patch2Pix [52] 5.42 12.53 22.12
FC-GNN 5.47 12.56 21.66

D2Net [12] + MNN

Origin 3.62 10.89 22.82
OANet [49] 2.37 6.69 14.30
Patch2Pix [52] 11.01 23.18 36.47
FC-GNN 10.34 21.91 35.52

R2D2 [31] + MNN

Origin 7.83 17.09 28.72
OANet [49] 5.82 14.05 24.34
Patch2Pix [52] 8.61 19.24 31.14
FC-GNN 10.47 22.07 34.82

SP [10] + MNN

Origin 8.79 19.51 32.51
OANet [49] 7.15 16.96 29.48
Patch2Pix [52] 12.01 25.83 40.91
FC-GNN 14.47 29.45 44.50

SP [10] + SG [36]

Origin 15.31 31.64 48.00
OANet [49] 3.56 9.66 19.83
Patch2Pix [52] 15.33 31.74 48.10
FC-GNN 18.46 36.47 52.98

SIFT [27] + LG [24]

Origin 15.08 30.52 46.17
OANet [49] 5.67 14.83 27.45
Patch2Pix [52] 13.72 28.62 43.96
FC-GNN 17.34 33.96 49.66

DISK [42] + LG [24]

Origin 12.74 24.80 38.32
OANet [49] 5.16 12.32 22.59
Patch2Pix [52] 11.69 24.26 37.94
FC-GNN 13.59 26.81 40.74

ALIKED [50] + LG [24]

Origin 14.63 29.21 44.03
OANet [49] 5.10 11.70 21.79
Patch2Pix [52] 13.31 27.31 41.94
FC-GNN 16.79 31.83 46.68

ASpanFormer [6]

Origin 25.69 45.85 63.31
OANet [49] 9.57 22.06 37.69
Patch2Pix [52] 16.45 32.98 48.73
FC-GNN 26.01 46.43 63.90

Table 3. Indoor pose estimation. The AUC of the pose error in
percentage is reported. We mark the best results in bold.
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Figure 1. Qualitative image matches on HPatches [1]. We mark matches with an error ≤ 1 pixel as green, and the rest as red. It can be
seen that FC-GNN greatly improves the accuracy of matching and effectively filtering out outliers.
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