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Figure 8. Qualitative comparisons on the DeepHDRVideo dataset
(3-Exposure). Compared to previous methods [2, 6, 14], our ap-
proach produces ghosting-free results under large motions.

6. More Experimental Results
6.1. More Comparisons with Previous Methods

As shown in Fig. 8, we provide more visual comparisons
with previous methods, Kalantaril9 [14], Chen21 [2], and
LAN-HDR [6]. The previous methods struggle to handle
large motions, resulting in ghosting artifacts in the final
HDR output. In comparison, our method produces high-
quality, ghosting-free HDR results. We also provide more
visual comparisons with flow-based methods [2, 14], shown
in Fig. 10. The optical flows predicted by the methods of
Kalantari et al. [14] and Chen et al. [2] are discontinuous,
lacking smoothness and completeness. As a result, their
HDR outputs exhibit ghosting artifacts and noise, and lose
details in saturated regions. In comparison, our predicted
flows are more accurate and smooth, enabling precise align-
ment in regions with large motions.

Fig. 9 shows the comparison between our method and
RAFT+fusion. RAFT’s [34] flow is sub-optimal, and align-
ment may fail in occluded regions. In contrast, our method
effectively handles occluded regions by learning an HDR-
oriented flow.

6.2. Runtime of Each Module

We benchmark the runtime of each module during infer-
ence for the 2-Exposure case. As shown in Tab. 5, our
Flow Network only takes 10ms and 15ms for resolutions
of 1280 x 720 and 1536 x 813, respectively. This is faster
than most existing flow methods [29, 34].
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Figure 9. Comparisons with RAFT+fusion. We construct
RAFT+fusion by using a pre-trained RAFT [34] flow network as
the flow estimator and employing the same fusion network as in
our approach. RAFT can effectively match visible objects, ex-
hibiting clear flow boundaries, but this flow is incapable of han-
dling occlusions during the alignment. As a result, the fused HDR
image exhibits ghosting artifacts in occluded regions. In compari-
son, our method effectively handles occluded regions by learning
an HDR-oriented flow.

Module 1280 x 720 1536 x 813
Flow Net with MLK 10 ms 15 ms
Fusion Net 15 ms 20 ms

Table 5. Runtime time analysis of each module for 2-Exposure
case. The input resolutions are 1280x 720 and 1536813, respec-
tively.

7. Network Details for the Proposed HDRFlow

7.1. Details of Flow Network with Multi-size Large
Kernel

Fig. 12 shows the architecture of our flow network. The en-
coder of the flow network consists of two subnetworks, one
builds a feature pyramid and another one builds an image
pyramid. The feature pyramid consists of 8 residual blocks,
2 at 1/2 resolution, 2 at 1/4 resolution, 2 at 1/8 resolution,
and 2 at 1/16 resolution. The corresponding channel num-
bers are 32, 64, 128, and 256, respectively. The image pyra-
mid is obtained by applying pooling operations on the con-
catenated LDR frames. We concatenate the feature pyramid
and the image pyramid at 1/4, 1/8, and 1/16 resolution. Fi-
nally, we obtain the flow feature at the 1/16 resolution.
Then, we perform the multi-size large kernel convolu-
tions to increase the receptive field and model large mo-
tions. The multi-size large kernel consists of three different-
sized large kernel convolutions, i.e., 7x7,9x9,and 11 x 11,
each modeling different degrees of large motions. We uti-
lize depth-wise convolutions, which almost do not increase
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Figure 10. Comparisons with the state-of-the-art methods. The optical flows predicted by the methods of Kalantari ez al. [14] and Chen et
al. [2] are discontinuous, lacking smoothness and completeness. As a result, their HDR outputs exhibit ghosting artifacts and noise, and
lose details in saturated regions. In comparison, our predicted flows are more accurate and smooth, enabling precise alignment in regions

with large motions. Thus, our method produces high-quality HDR output.

the computational costs, shown in Fig. 12.

The decoder of the flow network consists of two upsam-
pling blocks and a flow head. Each upsampling block has
a 4 x 4 kernel deconvolution with a stride of 2. After each
upsampling block, features are concatenated with a skip-
connection, and a 1 x 1 convolution followed by a 3 x 3
convolution is applied to merge the skipped and upsampled
features for the current resolution. The upsampled flow fea-
tures are at resolutions of 1/8 and 1/4, with channel numbers
of 128 and 64, respectively. After upsampling the flow fea-
ture to 1/4 resolution, the flow head is applied to predict the
bidirectional optical flows. The flow head consists of three
5 x b kernel convolutions.

7.2. Details of Fusion Network

The fusion network adopts a U-Net architecture with skip
connections, comprising three downsampling blocks and
three upsampling blocks. In more detail, each downsam-
pling block consists of a 3 x 3 convolution with a stride of
2, followed by a 3 x 3 convolution with a stride of 1. Af-
ter three downsampling blocks, we obtain features at three
different resolutions: 1/2, 1/4, and 1/8 of the original reso-
lution. The corresponding channel numbers for these reso-
lutions are 32, 64, and 128, respectively. Each upsampling

block consists of a 4 x 4 deconvolution with stride 2, fol-
lowed by a 3 x 3 convolution with stride 1. The fusion
network outputs the fusion weights for five LDR frames in
the linear domain.

7.3. Generation of Aligned Neighboring Frames

We use predicted bidirectional optical flows, F;_,;_1 and
F, 41, to align neighboring frames to reference frame via
warping operation,

Lio1t = W(Li—1, Fy i 1),

- (10)
Livioe = W( L1, Frosiga).

The Iit_1_>t and EH_l_ﬂ are aligned neighboring frames.

7.4. Optical Flow Labels for Sintel

We use the Sintel dataset as our training dataset. As shown
in Fig. 11, the Sintel dataset provides ground-truth forward
flow (Fy_,¢+1, the second row of Fig. 11). However, the
Sintel does not provide backward flow. To train our flow
network, we use pre-trained RAFT [34] flow network to
generate backward flow (F}_,;_1, the third row of Fig. 11)
as pseudo-labels.
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Figure 11. Optical flow labels for Sintel [1] dataset. The first row is video frames of Sintel dataset, and the second row is ground-truth
forward optical flow from frame t to t+1. The Sintel does not provide backward flow. Therefore, we use pre-trained RAFT [34] flow
network to generate backward optical flow from frame t to t-1 as pseudo-labels, shown in the third row.
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Figure 12. Flow Network with Multi-size Large Kernel. The flow network consists of the encoder, a multi-size large kernel, and a decoder.
The flow network takes LDR images as input and outputs bidirectional optical flows.

7.5. Extension to Three Exposures

We have illustrated our HDRFlow for handling videos cap-
tured with two alternating exposures in the paper. Here we
discuss the extension to three exposures.

Review of two-exposure model For sequences captured
with two alternating exposures (e.g., {EV-3, EV+0, EV-3,
... }), our flow network takes three LDR frames {L;_1, L;,
L;41} as input and estimates the optical flow, F;_,;_; and
F;_ty1. Then, we align the neighboring frames {L;_1,
L;11} to the reference frame ¢ based on these estimated
flows. Finally, the aligned frames (2 images) and the orig-
inal frames (3 images) in the linear domain are fused to-
gether through the fusion network to reconstruct a high-
quality and ghost-free HDR image for the reference frame.

HDRFlow for sequences with three exposures For se-
quences with three alternating exposures (e.g., {EV-2,
EV+0, EV+2, EV-2, EV+0, ... }), our HDRFlow takes five
frames {L;_o, Ly—1, Ly, Li4+1, Lyyo} as input and esti-

mates the HDR image for the reference frame ¢. Specif-
ically, we adjust the exposure of the reference frame ¢ to
match neighboring frames before injecting it into the flow
network. Thus, the flow network takes {L; o, gi+1(Lt),
Liy1} and {Li—1, gev2(Lt), Liyo) as input and estimates
four flow maps, Fi_;—9, Fyyi—1, Fiiv1, and Fi_ypo.
The four neighboring frames can then be aligned to the ref-
erence frame as {L,gﬂt, f/t,lﬁt, Et+1at, -Z/t+2~>t} using
the estimated flows. The aligned frames (4 images) and the
original input frames (5 images) in both the LDR and linear
HDR domain are used as the input (54 channels) for the fu-
sion network to estimate 9 fusion weight maps. Then, the
HDR image for the reference frame ¢ can be reconstructed
as the weighted average of 9 input images in the linear do-
main. The overall architectures of both the flow network
and fusion network remain consistent between sequences
with two and three exposures. The sole distinction lies in
the channel numbers at the input and output layers.
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