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Supplementary Material

Overview

In this supplementary material, we provide additional de-
tails and video results for the main paper:
• More descriptions of our method (Sec. 1 and 2) and ex-

periments (Sec. 3, 4, and 5).
• The Project Page showing all the video results (Sec. 6).
• Additional experiments for ablation studies (Sec. 7).
• Discussions of our Limitations (Sec. 8) and Societal Im-

pacts (Sec. 9).

1. Appearance Encoder Details

The appearance encoder in our model transforms the refer-
ence image Iref into the appearance condition ya. We then
integrate this condition information into the video synthesis
backbone. In order to preserve the spatial layout of the im-
age and retain information from reference image, we adapt
the self-attention mechanism into the hybrid one by query-
ing features from both zt and ya. The appearance condition
method is illustrated in Figure 1. At each denoising step
t, the reference image Iref is initially encoded into latents
using the pretrained VAE encoder [5]. Subsequently, we
feed these latents into appearance encoder backbone, i.e.,
a trainable UNet copy, to obtain ya, which represents the
normalized outputs of the first layer in each self-attention
Transformer block.

For the appearance encoder branch, we directly feed ya

into the original attention layers without any modification.
The Attention(Qa,Ka, Va) for ya is calculated by the de-
fault forward pass. As for the integration of appearance con-
dition, we pass ya to the linear projection layers in the video
synthesis backbone to compute K ′

a and V ′
a. Simultaneously,

the noisy latents zt are also projected into Q, K and V . We
concatenate the keys and values, denoted as [K,K ′

a] and
[V, V ′

a], to calculate the self-attention scores for video syn-
thesis.

Through this operation, our method can synthesize ani-
mations following the provided motion signal and retain the
appearance details from the reference image. This robust
ability to preserve appearance not only enhances animation
fidelity but also contributes to improved temporal consis-
tency in long-term animations.

2. Stage Training Details

Stage I: Appearance encoder and pose control. To save
the computation cost, we employ a multi-stage training
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Figure 1. We extract appearance features ya using our appear-
ance encoder. These appearance features are integrated into the
video synthesis backbone through the hybrid self-attention mech-
anism. In the appearance encoder, ya is fed into the default self-
attention blocks without any modification. To incorporate the ap-
pearance condition, we calculate the appearance key K′

a and value
V ′
a for ya using the linear projection layers of the video synthesis

backbone. Subsequently, we concatenate the keys and values into
[K,K′

a] and [V, V ′
a] to compute attention scores for video anima-

tion synthesis.

strategy for MagicAnimate. In the first stage, we temporar-
ily disable the temporal attention layers because they have
not been trained or finetuned on our training videos yet.
During this stage, we only optimize the appearance encoder
and pose ControlNet, facilitating the motion transfer of the
reference image. Our DensePose-based ControlNet is pre-
trained on human images in LAION [6] dataset. In the
training process, two frames are sampled from a long video
based on a double beta distribution, following established
practices in prior works [10, 12]. The first frame acts as the
reference image, and the learning objective is to denoise the
noisy latent towards the second image, which serves as the
target frame. The denoising process is guided by the Dense-
Pose of the target image through our pose ControlNet.

For the image joint training in this stage, we directly
use the identical reference image and target image from
the large-scale image dataset LAION [6]. In this sce-
nario, DensePose is also estimated from the reference im-
age, transforming the learning objective into the reconstruc-
tion of the reference image. Despite the absence of explicit
modeling of motion transfer in this iteration of reconstruc-
tion, our appearance encoder leverages the diversity of the
LAION dataset. Consequently, it learns to preserve the de-
tails in reference images more effectively, thereby augment-
ing the final animation fidelity.

https://showlab.github.io/magicanimate


Stage II: Temporal attention layers. In the training phase
for temporal attention layers, we freeze the appearance en-
coder and pose ControlNet. The learning objective in this
stage is learning the generation of video under the guidance
of a reference image and a pose sequence with K frames.
During training, a reference image is uniformly sampled
from the video, and K consecutive frames with an inter-
val of 4 are sampled to form the target video. Our temporal
attention layers are initialized from the pretrained weights
released by prior work [3], which is trained on the Web-
Vid [1] dataset.

For this stage, we introduce image-video joint training
as well. In each training iteration, there is a probability of
reducing the video length K to 1. When the video length
is reduced, the learning objective shits to transferring the
reference image into the target pose. This training strat-
egy serves two main purposes: (1) The appearance encoder
and pose ControlNet remain frozen in this stage. Through
this sampling strategy, we can enforce the temporal atten-
tion layers to maintain appearance details encoded by the
appearance encoder. (2) Given the limited scale of video
datasets, we have the flexibility to sample images from
LAION for augmenting the training data.

This technique further enhances the single-frame quality
of MagicAnimate. Additionally, considering that the TED-
talks dataset exhibits dim lighting conditions and signifi-
cantly differs in appearance distribution from the LAION
dataset, we also sample frames from the TED-talks dataset
for image joint training.

3. Implementation Details

We implement MagicAnimate using diffusers1 library
which is built on PyTorch. All experiments are conducted
on 8 Nvidia V100 GPUs. In the training stage for the ap-
pearance encoder and pose ControlNet, we use a batch size
of 8 with a learning rate of 1 × 10−5. For the image-video
joint training, τ0 is set to 0.2. In the training of temporal
attentions, a batch size of 8 is used with a learning rate of
1 × 10−4. For the image-video joint training of this stage,
different sampling thresholds τ1 and τ2 are used for differ-
ent datasets. On TikTok dataset [4], we set τ1 to 0.2 and τ2
to 0.2 for all the experiments except for applications. We
empirically find that using a smaller τ1 and τ2 can improve
generalization ability. Thus, we set τ1 and τ2 to 0 for ap-
plication experiments. For the TED-talks [7] dataset, we
use a τ1 of 0.2 and τ2 of 0.36. In MagicAnimate, K is set
to 16 and s is set to 4. The generation resolution is set to
512 × 512. During training, we only apply horizontal flip
augmentation for training videos.

1https://github.com/huggingface/diffusers

4. Dataset Preprocessing

We process the video datasets using a standard preprocess-
ing pipeline:
• Download videos: We download the original TikTok

video frames released by Jafarian et al. [4] and keep the
complete frames without any crop. For TED-talks [7],
we follow their official instructions to download original
Youtube videos with the highest possible resolutions. We
then crop and truncate the videos into multiple clips based
on the official tracklets. Different from the original square
crops, we crop and resize the clips into a resolution of
1024 × 512 to keep a larger field of view, which bene-
fits the estimation of DensePose. We extract all the video
clips into frames with 25 fps.

• Horizontal flip augmentation: MagicAnimate employs
DensePose as motion signal, but DensePose definition is
asymmetric and cannot be horizontally flipped. Thus, we
flip all of the videos in advance for augmentation and dou-
ble the dataset scale.

• Estimate DensePose: We use the official implementation2

to estimate DensePose for each video frame. Our motion
signal is derived from the visualization of the DensePose
segmentation map.

• Estimate background matting masks: Because certain
baseline methods, such as DisCo [8], require a segmenta-
tion mask of the human for foreground-background sepa-
ration, we estimate background matting masks using Pad-
dleSeg library3.

• Spatial crop: The preprocessing steps mentioned above
are applied to the original video frames, which typically
have a height-width ratio of around 1 : 2. We then per-
form a center crop on all video frames and resize them
into 512× 512.
Additionally, we make use of human images from

LAION [6] for pretraining our DensePose-based Control-
Net and for the image-video joint training. Consequently,
we estimate the DensePose for each human image in the
LAION dataset.

5. Details for PSNR Metrics

In our initial submission, we follow DisCo [8] and use their
official implementation4 to compute PSNR metrics. How-
ever, the community found that there exists an overflow
issue5 in their implementation. In the final version, we
have fixed this numerical overflow and reported the correct
PSNR results.

2https://github.com/facebookresearch/detectron2
3https://github.com/PaddlePaddle/PaddleSeg
4https://github.com/Wangt-CN/DisCo
5https://github.com/magic-research/magic-animate/issues/146



6. Video Results
To evaluate the performance of MagicAnimate and all
the baselines perceptually, we visualize a comprehensive
set of complete video results on our Project Page at
https://showlab.github.io/magicanimate. The video results
showcased on our project page include:
• The high-resolution animation results of MagicAnimate

on TikTok dancing dataset.
• Qualitative comparisons between MagicAnimate and

baselines on both TikTok and TED-talks datasets.
• The qualitative comparisons for cross-identity animation

between MagicAnimate and baselines.
• Applications for unseen domain animation, combination

with DALL·E3 [2], and multi-person animation.
To ensure deadline integrity, we have compressed our
project page along with all video results. These compressed
files are included in our supplementary material submis-
sion. Reviewers can also uncompress these files and open
our project page with the local browser. This provides evi-
dence that no modifications are made after the supplemen-
tary deadline.

7. Additional Ablation Studies
Ablations L1↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ FIDV↓ FVD↓
DWPose 3.48 17.19 0.689 0.259 38.81 17.86 163.89

DW+Dense 3.21 17.95 0.718 0.240 33.62 20.80 133.44
FullCond 3.38 17.96 0.704 0.248 36.64 21.77 168.99

Ours 3.13 18.22 0.714 0.239 32.09 21.75 179.07

Table 1. More ablation studies, we report L1×10−4.
In this section, we conduct additional experiments for

ablation studies.
Driving signals: Table. 1 shows that using keypoints es-

timated by DWPose [11] produces lower single-frame qual-
ity because keypoints are sparse and less stable than Dense-
Pose. Furthermore, we combine these two driving signals
by addition. It can be observed that although the combined
signal (DWPose+DensePose) achieves better video quality,
its single-frame quality is not comparable to ours.

Condition layers: Table. 1 shows that the full (down-
mid-up) condition has lower single-frame quality than our
mid-up condition. We believe the full appearance condition
is too strong, which could reduce pose controllability.

8. Limitations
MagicAnimate achieves state-of-the-art human image ani-
mation results and demonstrates strong robustness for un-
seen data. However, there is still room for improvement
in several aspects: (1) Although DensePose provides dense
guidance for the animation, there exists flickering and oc-
casional failures for the DensePose estimation method [9].
Therefore, enhancing the robustness and accuracy of the
DensePose estimator would contribute to the overall per-
formance of our human image animation. (2) DensePose

also lacks control signals for facial and finger details. In-
tegrating a multi-ControlNet could fill this gap and poten-
tially enhance the control capabilities for faces and hands.
This enhancement may result in more realistic and detailed
animations. (3) While diffusion-based methods offer high-
quality results, they are generally less efficient than GAN-
based methods due to multiple denoising steps. We believe
exploring strategies to improve the efficiency of MagicAni-
mate could largely enhance its applicability.

9. Potential Negative Societal Impacts
The negative societal impact of this work is the potential
misuse of our model for malicious purposes, including the
generation of misleading content for misinformation, ha-
rassment, or fraudulent activities. Moreover, the datasets
employed for training our model might inherently contain
biases, such as uneven demographic distributions. Conse-
quently, our model may inadvertently perpetuate these bi-
ases present in the training data. It is imperative to exercise
caution regarding these biases and address fairness consid-
erations when deploying the model.
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