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In this document, we provide high-resolution rendering
results, more visual results and more implementation de-
tails. We invite the readers to our project page https:
//haofeixu.github.io/murf/ for more video re-
sults.

A. High-Resolution Rendering

Our MuRF is developed with the target view frustum vol-
ume representation. The volume resolution of the coarse
model is H

8 × W
8 × D1 × C1, and the fine model is H ×

W ×D2×C2 for H×W image resolution to render, where
D1 = 64 and D2 = 16 are the numbers of sampling points
on each ray, and C1 = 128 and C2 = 16 are the volume’s
feature dimensions. Such resolutions are usually acceptable
for typical image resolutions (e.g., 512 × 512) on general
hardware. Should the memory consumption become a bot-
tleneck for high-resolution images, we can always switch
to the patch-based rendering strategy. More specifically, we
first split the volume’s first two spatial dimensions to a total
number of P ×P overlapping patches, and then render each
patch independently. Finally, we merge all the patch results
to a full image, where the overlapping regions are combined
with simple averaging. Such a patch-based rendering strat-
egy enables our method to scale to virtually arbitrary image
resolutions.

In Fig. B, we show 1536 × 2048 resolution rendering
results on the LLFF [6] dataset, where the results are ob-
tained by splitting the full resolution volume to 16 (4 × 4)
overlapping patches.

B. More Visual Results

Geometry Visualization. In Fig. A, we show the rendered
depth and normal maps from our model, which indicates
that our model learned 3D concepts from pure RGB images.

Different Camera Baselines. In Fig. C, we show the vi-
sual comparison results with previous state-of-the-art small

Figure A. Rendered image, depth and normal from 3 views.

baseline method ENeRF [5] on the DTU dataset. Our
MuRF consistently outperforms ENeRF in different base-
lines, and the performance gap becomes larger for larger
baselines. In Fig. D, we show the visual comparison results
with previous state-of-the-art larger baseline method At-
tnRend [3] on the RealEstate10K [10] dataset. Our MuRF
consistently outperforms AttnRend in different baselines.
Our method also gains larger improvement for smaller base-
lines than AttnRend, and our renderings are sharper, while
AttnRend’s results tend to be blurry.

Cross-Dataset Generalization. In Fig. E, we show
the cross-dataset generalization results on DTU [4] and
Mip-NeRF 360 [1] dataset with the model trained on
RealEstate10K [10]. Our MuRF outperforms AttnRend [3]
by significant margins.

C. More Implementation Details

Following MatchNeRF [2], we initialize our multi-view
Transformer encoder with GMFlow [9] pre-trained weights.
The learning rates of the image encoder and the radiance
field decoder are 5× 10−5 and 5× 10−4, respectively. The
details on each specific experiment are presented below. We
will release all the code and models to ease reproduction.

DTU. The image resolution of the DTU dataset is 512 ×
640. We train our coarse model for 20 epochs on eight RTX
A6000 GPUs with a random crop size of 384 × 512. The
batch size is 8. The performance of the coarse model on the
DTU test set is PSNR: 27.19, SSIM: 0.925, LPIPS: 0.120.
We then train the fine model with the coarse model frozen.
The fine model is trained for 12 epochs with a random crop
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size of 256× 384, and the batch size is 8.

RealEstate10K. We use the image resolution of 256× 256
on the RealEstate10K dataset following AttnRend [3]. For
this resolution, we use 4× subsampling when constructing
the volume and no additional hierarchical sampling is used.
We train the model for 50 epochs on three A100 GPUs with
a random crop size of 224× 224, and the batch size is 6.

LLFF. The testing image resolution of the LLFF [6] dataset
is 756×1008, and the training data consists of several mixed
datasets following previous works [7, 8]. We train mod-
els with different numbers (2, 6, and 10) of input views
to compare with previous methods. The 2-view model is
trained with a random crop size of 384 × 512, and the 6-
view and 10-view models are trained with 256 × 384 ran-
dom crops. The 2-view and 6-view models are trained on
eight RTX A6000 GPUs, and the 10-view model is trained
on two A100 GPUs.

Ablations. For ablation experiments on the DTU and
RealEstate10K datasets in the main paper, we only train
the coarse models without the hierarchical sampling. All
ablations are trained two RTX 3090 GPUs. The DTU mod-
els are trained for 20 epochs with a random crop size of
256 × 416, and the RealEstate10K models are trained for
80 epochs with the full 256× 256 resolution.
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Figure B. 1536× 2048 resolution renderings on the LLFF dataset.
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Figure C. Results of different camera baselines on DTU. Our MuRF consistently outpeforms previous state-of-the-art small baseline
method ENeRF [5], and the performance gap becomes larger for larger baselines.



5

Input 1 Input 2 GT AttnRend MuRFCamera
Baseline

128

64

32

16

8

4

2

Figure D. Results of different camera baselines on RealEstate10K. Our MuRF consistently outpeforms previous state-of-the-art large
baseline method AttnRend [3], and our method gains larger improvement for smaller baselines than AttnRend.
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Figure E. Generalization on DTU and Mip-NeRF 360 dataset with the model trained on RealEstate10K.
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