
Permutation Equivariance of Transformers and Its Applications

Supplementary Material

7. Structure of Transformer

Transformer-based models are the state-of-the-art deep
neural networks and have attracted great attention in both
areas of computer vision and natural language processing.
Models including transformer encoder blocks as their back-
bone, such as Bert [6], ViT [8], T2T-ViT [35], ViTGAN
[12], BEiT [2] and CoCa [34], have been achieving exceed-
ing performance in a great many tasks.

Transformer encoder blocks, as shown in Fig. 9, mainly
contain two critical components: Multi-head Scaled-dot-
product self-attention and a feed-forward network (MLP).
Inputs are fed in the form of patches, which are usually em-
bedding vectors for words in Bert, or for fractions of images
in ViT. The relative position of patches are learned by po-
sition embeddings [32], which are injected into the model.
Fig. 9 shows the main operators in a Transformer where the
shortcut and the linear projection in the Attention block are
left out for simplicity.

Transformer Blocks

Linear
Linear

Linear

Patches

Q K V

(Masked)
Self-Attention

MLP

Patches

Data

Embedding

Position 
Embedding

Task
Head

Output

Figure 9. Transformer Encoder Block

The Transformer encoder block is denoted as Enc and
the loss is ℓ. The patch embedding of a single input X is
expressed as Z of shape (p, d). The first layer in the self-
attention contains three parallel linear layers projecting Z
to Q,K, V as

Q = ZW⊤
Q , (14)

K = ZW⊤
K , (15)

V = ZW⊤
V . (16)

Q,K, V are fed to the following attention operation

S = Softmax(
QK⊤
√
d

), (17)

A = SV , (18)

where S and A are the softmax output, and the attention
output, respectively.

We neglect the attention projection and the residual con-
nection for simplicity. The part following the attention layer
is the MLP layer:

A1 = AW⊤
1 , (19)

H = a(A1), (20)

A2 = HW⊤
2 (21)

where A1,A2 are the outputs of the linear layers with
weights W1,W2, respectively, and H is the output of the
element-wise activation function a which can be ReLu,
Tanh, etc.

The backward propagation of Transformer encoder
block is as following , we calculate the all the gradients from
the final layer back to the first. Gradients are expressed as

dl = tr(
∂l

∂A2

⊤
dA2)

= tr(
∂l

∂A2

⊤
(dH)W⊤

2 ) + tr(
∂l

∂A2

⊤
Hd(W⊤

2 )).

The two additive terms are inspected in the following.
Let’s study H first:

dl1 ≜ tr(
∂l

∂A2

⊤
(dH)W⊤

2 )

= tr(W⊤
2

∂l

∂A2

⊤
dH)

= tr((
∂l

∂A2
W2)

⊤dH),

indicating
∂l

∂H
=

∂l

∂A2
W2. (22)

For W2,

dl2 ≜ tr(
∂l

∂A2

⊤
Hd(W⊤

2 ))

= tr(dW2H
⊤ ∂l

∂A2
)

= tr((
∂l

∂A2

⊤
H)⊤dW2),



and
∂l

∂W2
=

∂l

∂A2

⊤
H. (23)

For A1:

dl1 = tr((
∂l

∂H

⊤
dH)

= tr(
∂l

∂H

⊤
d(a(A1)))

= tr(
∂l

∂H

⊤
a′(A1)⊙ dA1))

= tr((
∂l

∂H
⊙ a′(A1))

⊤dA1),

by Eq. 22, we have

∂l

∂A1
=

∂l

∂A2
W2 ⊙ a′(A1). (24)

Similarly, we calculate the gradients of A and W1:

∂l

∂A
=

∂l

∂A1
W1, (25)

∂l

∂W1
=

∂l

∂A1

⊤
A. (26)

In the attention operation:

dl3 ≜ tr(
∂l

∂A

⊤
dA)

= tr(
∂l

∂A

⊤
(dS)V ) + tr(

∂l

∂A

⊤
SdV )

= tr((
∂l

∂A
V ⊤)⊤dS) + tr((S⊤ ∂l

∂A
)⊤dV ),

and
∂l

∂S
=

∂l

∂A
V ⊤, (27)

∂l

∂V
= S⊤ ∂l

∂A
. (28)

First, for V = ZW⊤
V :

dl4 ≜ tr(
∂l

∂V

⊤
dV )

= tr(
∂l

∂V

⊤
(dZ)W⊤

V ) + tr(
∂l

∂V

⊤
ZdW⊤

V ).

Similarly, the gradients of Z and WV are:

∂l

∂Z
=

∂l

∂V
WV , (29)

∂l

∂WV
=

∂l

∂V

⊤
Z. (30)

Now we focus on S = Softmax(QK⊤
√
d

):

dl5 ≜ tr(
∂l

∂S

⊤
dS)

= tr(
∂l

∂S

⊤
(diag(S)− S⊤S)d(

QK⊤
√
d

))

= tr(((diag(S)− S⊤S)⊤
∂l

∂S
)⊤d(

QK⊤
√
d

)),

and thus

∂l

∂Q
=

1√
d
((diag(S)− S⊤S)⊤

∂l

∂S
)K, (31)

∂l

∂K
=

1√
d
((diag(S)− S⊤S)⊤

∂l

∂S
)⊤Q. (32)

And similarly the gradients of WQ and WK are:

∂l

∂WQ
=

∂l

∂Q

⊤
Z, (33)

∂l

∂WK
=

∂l

∂K

⊤
Z. (34)

8. Alg. on Permuted Training

Our permuted training is described by pseudo code in
Alg. 1. It should be noted that the permutation takes place
not on the dimension of ‘batches’ but on the rest two dimen-
sions. Taking ViT for example, each image is transformed
into a (p, d) matrix representing p patches, and each patch
denotes a fraction of the image. Each fraction is embedded
into a d-dimensional vector.

We further provide a toy example. Let Z of shape (3, 4)
and the row shuffle matrix PR be

Z =

1 2 3 4
5 6 7 8
9 10 11 12

 PR =

0 1 0
0 0 1
1 0 0

 .

The row permuted feature is

PRZ =

5 6 7 8
9 10 11 12
1 2 3 4

 .

Column permutation is performed in a similar way. Note
that permutation matrices are orthogonal, i.e., P−1

R = P⊤
R

and P−1
C = P⊤

C .



Algorithm 1 Permuted Training

1: Initialization: Initialize the model. Load permutation
matrices PR,PC .

2: Start training
3: repeat
4: Start a new epoch
5: repeat
6: Get a batch of data X from data loader
7: Get embedding Z of size (batch size, p, d).
8: if using row permutation then
9: Z = matmul(PR,Z)

10: end if
11: if using column permutation then
12: Z = matmul(Z,PC)
13: end if
14: Send Z to the Transformer Backbone and retrieve

the output Ŷ
15: if using row permutation then
16: Ŷ = matmul(P−1

R , Ŷ )
17: end if
18: if using column permutaton then
19: Ŷ = matmul(Ŷ ,P−1

C )
20: end if
21: Perform backward propagation
22: until done all batches
23: until done all epochs

9. Permutation-Equivariant Operators

As far as we will show, the following operators are
permutation-equivariant:
• Element-wise operators,
• Softmax,
• Linear layer,
• MLP,
• LayerNorm and BatchNorm,
• Attention.
In the following, we will prove the permutation-
equivariance of each operator.

Element-wise operators including shortcut, Hadamard
product, matrix addition/subtraction and other element-wise
functions. We have

Lemma 9.1. Element-wise operators are permutation-
equivariant that

(PRAPC)⊙ (PRBPC) = PR(A⊙B)PC . (35)

where ⊙ denotes the element-wise operation.

On the left hand-side of the equation, aij in A and bij
in B are permuted to the same position before being per-
formed the operation. On the right hand-side, aij and bij

are performed the operation of which the results are per-
muted. The two are obviously equivariant. Lemma 9.1 also
holds for matrix addition and activation function:

a(PRAPC) = PRa(A)PC (36)

where a is an element-wise activation function, or other
element-wise functions like scalar multiplication, division,
etc.

Lemma 9.2. Softmax is permutation-equivariant:

Softmax(PRAPC) = PRSoftmax(A)PC . (37)

This is because an element is always normalized with the
same group of elements, which are not changed in permu-
tations. Thus Softmax is permutation-equivariant.

Lemma 9.3. Linear layer is permutation-equivariant:

f(P )(PRXPC) = PRf(X)PC (38)

where f(X) = XW⊤+b and f(P )(X) = XW⊤
(P )+b(P )

and:
W(P ) = P⊤

C WPC ,

b(P ) = bPC .

Proof.

f(P )(PRXPC) = PRXPCW
⊤
(P ) + b(P )

= PRXPC · P⊤
C W⊤PC + bPC

= PRXW⊤PC + bPC

= PRf(X)PC ,

where the bias b is broadcast to each row. Note that if
PC ̸= I , the identity matrix, this lemma is limited to lin-
ear layer with square weight matrix. If PC is not included,
i.e. only row shuffle is used, then all linear layers are row-
permutation equivariant.

Lemma 9.4. MLP is permutation-equivariant:

f(P )(PRXPC) = PRf(X)PC (39)

where
f(X) = σ(XW⊤

1 + b1)W
⊤
2 + b2,

f(P )(X) = σ(XW⊤
1(P ) + b1(P ))W

⊤
2(P ) + b2(P ),

and:

W1(P ) = W1PC ,W2(P ) = P⊤
C W2,

b1(P ) = b1, b2(P ) = b2PC ,

where σ is the activation function, W1 ∈ Rt×d, W2 ∈
Rd×t, b1 ∈ Rt, b2 ∈ Rd, and t is the hidden dimension of
MLP.



Proof.

f(P )(PRXPC) = σ(PRXPCW
⊤
1(P ) + b1(P ))W

⊤
2(P ) + b2(P )

= σ(PRXW⊤
1 + b1)W

⊤
2 PC + b2PC

= PR(σ(XW⊤
1 + b1)W

⊤
2 + b2)PC

= PRf(X)PC

where the third equation holds due to Lem. 9.1 and the
broadcast of bias.

Lemma 9.5. Normalization (LayerNorm for example, LN
for short) is permutation-equivariant:

LN(P )(PRXPC) = LN(X) (40)

where LN(X) = X−E(X)√
Var(X)−ϵ

∗ γ + b, and:

γ(P ) = γPC , b = bPC .

Since the same E(X) and Var(X) work on each ele-
ment, permutation dose not affect the normalization opera-
tion. And the affine operation is ‘column-wise’, weight γ
and bias b are broadcast to each row.

Lemma 9.6. Attention (A = Softmax(QK⊤
√
d

)V ) is
permutation-equivariant:

Attetion(PRQPC ,PRKPC ,PRV PC)

= PRAttetion(Q,K, V )PC .
(41)

Proof.

Attetion(PRQPC ,PRKPC ,PRV PC)

= Softmax(
PRQPC · P⊤

C K⊤P⊤
R√

d
)PRV PC

= PRSoftmax(
QK⊤
√
d

)P⊤
R · PRV PC

= PRAttetion(Q,K, V )PC

where the second equality holds because of the permutation
equivariance of Softmax.

Multihead attention is a special case. The validity of
Thm. 4.4 and Thm. 4.5 is contingent on constraining the
permutation PC to operate within a single head. It means
permutation equivariance holds if permutation is performed
within each head, or on different heads, but not across
heads. In that case, the feasible permutation space shrinks
but the space is still considerable. Take a base Transformer
for example, the possible permutations is reduced from 768!
to 12!× 64!.

We later provide detailed proofs of Thm. 4.1, Thm. 4.2,
Thm. 4.4, Thm. 4.5 specifically for Transformer architec-
ture.

10. Proofs on Transformer Encoder Blocks
We show the detailed proof on the Transformer encoder
blocks. The notations are shown in Appendix 7, and Trans-
former Encoder Block is denoted as Enc for short.

10.1. Enc is Forward Permutation-Equivariant

Enc is forward permutation-equivariant. As proven above,
all the basic operators in Enc are permutation-equivariant.
The following section shows how the combination of the
operators still holds in detail. The proofs of Thm. 4.1 and
Thm. 4.4 are organized into one where the weight matrices
are permuted by PR and PC at the same time. The row per-
mutation equivariance can be seen as a special case where
PC = I , and the column permutation equivariance is a spe-
cial case of PR = I .

Proof. First and foremost, we ‘encrypt’ all the weight ma-
trices by Eq. 6:

Wi(p) = P⊤
C WiPC ,

where PC is the column permutation matrix, Wi is the
weight of a normal Enc, and i ∈ {Q,K, V }. Weights
in MLP are ‘encrypted’ by W1(C) = W1PC , W2(C) =

P⊤
C W2. We denote the Transformer encoder block with

such ‘encryption’ as Enc(P ).
For Q:

Q(P ) = Z(P )W
⊤
Q(P ) (42)

= PRZPC · P⊤
C W⊤

QPC (43)

= PRZW⊤
QPC (44)

= PRQPC . (45)

Similarly for K,V :

K(P ) = PRKPC , (46)
V(P ) = PRV PC . (47)

For S = Softmax(QK⊤
√
d

):

S(P ) = Softmax(
Q(P )K

⊤
(P )√

d
) (48)

= Softmax(
PRQPC · P⊤

C K⊤P⊤
R√

d
) (49)

= Softmax(
PRQK⊤P⊤

R√
d

) (50)

= PRSoftmax(
QK⊤
√
d

)P⊤
R (51)

= PRSP
⊤
R . (52)



So for A:

A(P ) = S(P )V(P ) (53)

= PRSP
⊤
R · PRV PC (54)

= PRSV PC (55)
= PRAPC . (56)

Following the attention layer, A is fed to the MLP layer:

A1(P ) = A(P )W
⊤
1(P ) (57)

= PRAPC · P⊤
C W1 (58)

= PRAW1 (59)
= PRA1. (60)

Similarly for A2,

A2(P ) = PRA2PC . (61)

As for the activation in the middle, the element-wise ac-
tivation function is permutation-equivariant:

H(P ) = PRH. (62)

Overall, we have proved Enc satisfies permutation for-
ward equivariance.

10.2. Enc is Backward Permutation-Invariant

According to Thm. 4.7, since all the operators in Enc
are forward permutation-equivariant, the feature of Enc is
backward permutation-equivariant and the weight in Enc
is permutation-invariant. The following section shows how
the combination of the operators still holds in detail. Similar
to the proof of forward permutation equivariance, we prove
Thm. 4.2 and Thm. 4.5 altogether in one proof where the
weight matrices are permuted by PR and PC at the same
time. The row permutation equivariance can be seen as a
special case where PC = I , and the column permutation
equivariance is a special case of PR = I .

Proof. Due to the shuffling and unshuffling procedures of
Alg. 1, we have the forward and backward propagation out-
side of the backbone no different from the normal ones.
Hence we only focus on the propagation of the Transformer
encoder blocks.

We denote A3(P ) as the reversed intermediate feature
that the down-stream head receives:

A3(P ) = P⊤
R A2(P )P

⊤
C . (63)

Since the feature is unshuffled, we have

A3(P ) = A3 = A2. (64)

First, we focus on the MLP layer:

dl = tr(
∂l

∂A3(P )

⊤
P⊤

R d(A2(P ))P
⊤
C )

= tr(P⊤
C

∂l

∂A3(P )

⊤
P⊤

R dA2(P ))

= tr((PR
∂l

∂A3(P )
PC)

⊤dA2(P )),

that is:
∂l

∂A2(P )
= PR

∂l

∂A3(P )
PC = PR

∂l

∂A2
PC (65)

by Eq. 64.
With H(P ) = PRHP⊤

C and Eq. 23, the gradient:

∂l

∂W2(P )
=

∂l

∂A2(P )

⊤
H(P )

= P⊤
C

∂l

∂A2

⊤
P⊤

R · PRH

= P⊤
C

∂l

∂A2

⊤
H

= P⊤
C

∂l

∂W2
,

that is:
∂l

∂W2(P )
= P⊤

C

∂l

∂W2
. (66)

By Eq. 24 and Eq. 66, we have

∂l

∂A1(P )
=

∂l

∂A2(P )
W2(P ) ⊙ a′(A1(P ))

= [PR
∂l

∂A2
PC · P⊤

C W2]⊙ [PRa
′(A1)]

= [PR
∂l

∂A2
W2]⊙ [PRa

′(A1)]

= PR[
∂l

∂A2
W2 ⊙ a′(A1)]

= PR
∂l

∂A1
,

that is:
∂l

∂A1(P )
= PR

∂l

∂A1
. (67)

The weight W1(P ) in the MLP has the following gradi-
ent by Eq. 26:

∂l

∂W1(P )
=

∂l

∂A1(P )

⊤
A(P )

=
∂l

∂A1

⊤
P⊤

R · PRAPC

=
∂l

∂W1
PC ,



that is:

∂l

∂W1(P )
=

∂l

∂W1
PC . (68)

And we come to the attention operation, from Eq. 25, we
have

∂l

∂A(P )
=

∂l

∂A1(P )
W1(P )

= PR
∂l

∂A1
W1PC

= PR
∂l

∂A
PC ,

that is:

∂l

∂A(P )
= PR

∂l

∂A
PC . (69)

Hence we observe the permutation rules for the gradients
of the intermediate-layer outputs vary from the gradients
of the weights. As for the gradients of the softmax-layer
output, we have

∂l

∂S(P )
=

∂l

∂A(P )
V ⊤
(P )

= PR
∂l

∂A
PC · P⊤

C V ⊤P⊤
R

= PR
∂l

∂A
V ⊤P⊤

R

= PR
∂l

∂S
P⊤

R ,

that is:

∂l

∂S(P )
= PR

∂l

∂S
P⊤

R . (70)

Since S(P ) follows Eq. 52, we have the gradients for

Q(P ) combining with Eq. 70:

∂l

∂Q(P )
=

1√
d
[(diag(S(P ))− S⊤

(P )S(P ))
∂l

∂S(P )
]K(P )

=
1√
d
[(PRdiag(S)P

⊤
R − PRS

⊤P⊤
R · PRSP

⊤
R )

· PR
∂l

∂S
P⊤

R ]PRKP⊤
C

=
1√
d
[(PRdiag(S)P

⊤
R − PRS

⊤SP⊤
R )

· PR
∂l

∂S
P⊤

R ]PRKP⊤
C

=
1√
d
[PR(diag(S)− S⊤S)

· P⊤
R · PR

∂l

∂S
P⊤

R ]PRKPC

=
1√
d
[PR(diag(S)− S⊤S)

∂l

∂S
P⊤

R ]PRKPC

=
1√
d
PR(diag(S)− S⊤S)

∂l

∂S
P⊤

R · PRKPC

= PR
1√
d
(diag(S)− S⊤S)

∂l

∂S
KPC

= PR
∂l

∂Q
PC .

By a similar derivation on K we obtain:

∂l

∂K(P )
= PR

∂l

∂K
PC . (71)

Following a similar proof to the gradients of W1(P ) or
W2(P ), we could easily derive:

∂l

∂WQ(P )
= P⊤

C

∂l

∂WQ
PC , (72)

∂l

∂WK(P )
= P⊤

C

∂l

∂WK
PC . (73)

By Eq. 28, the gradient of V(P ) is

∂l

∂V(P )
= S⊤

(P )

∂l

∂A(P )

= PRSP
⊤
R · PR

∂l

∂A
PC

= PR
∂l

∂V
PC ,

and thus we have

∂l

∂V(P )
= PR

∂l

∂V
PC , (74)

∂l

∂WV (P )
= P⊤

C

∂l

∂WV
PC . (75)



So far, we have proved the rule for the gradient of weight
matrices:

∂l

∂Wi(P )
= P⊤

C

∂l

∂Wi
PC , i ∈ {Q,K, V }. (76)

∂l

∂W1(P )
=

∂l

∂W1
PC ,

∂l

∂W2(P )
= P⊤

C

∂l

∂W2
. (77)

Wi(P ) are the weights of Enc(P ) while Wi are the
weights of Enc. By induction, we can reach the conclu-
sion that if a Transformer encoder block is randomly ini-
tialized and trained with Z(P ), it would eventually learn to
become Enc(P ), the weights of which are associated with
Enc by Eq. 76 and Eq. 77. The proof of backward equiv-
ariance on the linear projection in the attention is omitted
as its proof is similar and the conclusion is the same with
Eq. 76. Hence we have proved backward permutation in-
/equi-variance.

10.3. Proofs on Embeddings

We show in this section that the parameters of the embed-
ding layer F1, including the position embeddings, are the
same despite Alg. 1 is applied or not.

Theorem 10.1. The parameters of F1 trained with or with-
out permutation are the same.

Proof. We denote the output of F1 as Z0, and the input of
the Transformer backbone as Z. In normal setting (Eq. 1),
Z equals to Z0, and so do their gradients. In the permuted
setting where we use subscript (P ) to denote all the varibles,
the input to the backbone is the permuted output of F1(P ):

Z(P ) = PRZ0(P )PC . (78)

To prove the weights of F1(P ) is equivalent to those of
F1, we need to prove:

∂l

∂Z0(P )
=

∂l

∂Z0
. (79)

It is clear that

dl = tr(
∂l

∂Z(P )

⊤
dZ(P ))

= tr(P⊤
C

∂l

∂Z

⊤
P⊤

R PRdZ0(P )PC)

= tr(PC P⊤
C

∂l

∂Z

⊤
dZ0(P ))

= tr(
∂l

∂Z

⊤
dZ0(P )),

where the second equality holds by Lemma 4.8. Hence,

∂l

∂Z0(P )
=

∂l

∂Z
=

∂l

∂Z0
. (80)

The invariance of the weights of F1 can be derived from
Eq. 80.

It is worth noting that the position embeddings are added
before the permutation, so Transformer gets the right posi-
tion information, since Transformer modeling the position
by the position embeddings instead of the order of the input.

10.4. Proofs on Masked Attention

Masked attention is an essential component in the Trans-
former Decoder Block which is the backbone of the genere-
tive language model [3, 27]. The token permutation can
hardly pass through the nonlinear effect of the masked at-
tention, but the column permutation cancels out before the
mask takes effect. Thus for the masked attention, we apply
column permutations only.

Theorem 10.2. The results of Masked Softmax with or with-
out column permutation are the same:

MS(P ) = MS. (81)

Proof. For MS = Softmax(QK⊤
√
d

):

MS(P ) = Masked− Softmax(
Q(P )K

⊤
(P )√

d
) (82)

= Masked− Softmax(
QPC · P⊤

C K⊤
√
d

) (83)

= Masked− Softmax(
QK⊤
√
d

) (84)

= Masked− Softmax(
QK⊤
√
d

) (85)

= MS. (86)

11. Detailed Experimental Setup
11.1. Training Setup

In fine-tuning ViT-Base on Cifar10, an Adam optimizer
with a fixed learning rate 10−4 is used. The model is trained
for 5 epochs with a cross-entropy loss. In fine-tuning Bert
and GPT2 on IMDB classification, an Adam optimizer with
a fixed learning rate 10−5 is used. The models are trained
for 2 epochs.

For the ‘unauthorized’ and train-from-scratch setting on
Cifar10 of ViT, the default training setting of ViT is used.
Random data augmentation and cosine scheduler are added
and the model is trained for 200 epochs till convergence.

The text generation in the properties validation exper-
iments is zero-shot learning on huggingface pre-trained
GPT2. The model is fine-tuned with Adam optimizer and
learning rate 10−5 for 1 epoch.



For the CelebA attribute classification task in the
‘privacy-preserving split learning’ experiments, we adopt
timm pre-trained model vit base patch16 224 (ViT-Base)
to transfer to a 40-binary-attribute classification task. A
SGD optimizer is used with a cosine scheduler, for which
the (initial, final) learning rate are set to (0.05, 2 × 10−4)
and (5×10−4, 2×10−6) for the classification head and the
encoder blocks, respectively.

11.2. Threat Model of Privacy-Preserving Split
Learning

The threat model is consist with [15, 33]. We assume the
edge holds a private training data set Dtrain = {X,Y },
where X are the private data and Y are the private la-
bels. The edge aims at training a model with the assistance
of the cloud, yet without exposing the private data. The
cloud possesses powerful computing power and is honest-
but-curious, meaning it obeys the protocol and performs the
learning task accordingly, but is curious about the private
data. The edge selects a model and splits it into three parts:
F1,Enc, F2. F1, F2 are parts close to the input layer and the
output layer, respectively, which are sufficiently lightweight
to deploy on the edge, whereas Enc is the major part run in
the cloud.

Referring to the loss function as Ltask and the local
privacy-preserving method as M , the ultimate goal is to
jointly train F1,Enc, F2 to

minimize
F1,Enc,F2

Ltask(F2(Enc(F1(X))), Y ), (87)

without the edge revealing X,Y to the cloud. Accessing
F1(X) should not permit the cloud to infer about X . The
cloud could launch black-box inversion attacks:

Black-box attackers collect the auxiliary data set Xaux

and the corresponding features under protection mecha-
nism M as M(F1(Xaux)), maybe over multiple training
rounds. The attacker trains an inversion model G over
(Xaux,M(F1(Xaux))) to invert the raw input from features
[7, 10, 24] by

minimize
G

Latk(G(M(F1(Xaux))), Xaux). (88)

The loss Latk can be the mean square error (MSE) between
the reconstructed input X̃aux and Xaux. At convergence, G
works as a decoder to invert features into inputs. We adopt
the MAE decoder G with base-size Transformer backbone
and a Tanh activation layer, pre-trained on ImageNet, as the
model inversion model. We train G with an AdamW opti-
mizer with a learning rate of 10−4 for 30 epochs.


	. Structure of Transformer
	. Alg. on Permuted Training
	. Permutation-Equivariant Operators
	. Proofs on Transformer Encoder Blocks
	. Enc is Forward Permutation-Equivariant
	. Enc is Backward Permutation-Invariant
	. Proofs on Embeddings
	. Proofs on Masked Attention

	. Detailed Experimental Setup
	. Training Setup
	. Threat Model of Privacy-Preserving Split Learning


