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7. Another understanding of ACM

7.1. From Complex Function to Polar Mapping

For the complex-exponential-based encoding proposed in
the main text, leveraging Euler’s formula allows for its trans-
formation into a polar-coordinate mapping, as following:

z = f(θ) = ejωθ

= cos(ωθ) + j sin(ωθ) (12)

θ = f−1(z) = − j

ω
ln z

=
1

ω
((arctan2(zim, zre) + 2π) mod 2π) (13)

where ω ∈ R+ is angular frequency, arctan2 is another ver-
sion of arctan with quadrant assignment, and zre, zim are
real-part and imagine-part of complex coding z ∈ Z, respec-
tively. By hiding the complex mark of the encoding, we can
regard it as a 2D polar coordinate encoding, as following:

(zx, zy) = f(θ) = (cos(ωθ), sin(ωθ)) (14)

θ = f−1(zx, zy)

=
1

ω
((arctan2(zy, zx) + 2π) mod 2π) (15)

where ω ∈ R+ is still angular frequency, arctan2 is another
version of arctan with quadrant assignment, zx, zy are x-
axis-component and y-axis-component of 2D vector z ∈
R2, respectively. This form is similar to continuous PSC
encoding [41], but note that PSC cannot perform the above
conversion.

7.2. Mathematical Meaning of Polar Mapping

In this perspective, encoding corresponds to the Cartesian
coordinates of a unit vector, while decoding corresponds to
the polar coordinates representation of the same unit vector.
As is shown in Fig. 6a, given a vector with polar angle ϕ and
radius(length) ρ in 2-dimensional space, it can be decompose
as (ρ cos(ϕ), ρ sin(ϕ)) in Cartesian coordinates. When the
radius ρ is fixed and ϕ is just considered in single period, the
polar angle and Cartesian coordinates are one-to-one corre-
spondences. Therefore, even leaving aside we can utilize this
relationship to design f and obtain the corresponding f−1 as
& Fig. 6b. In contrast, PSC coding [41] does not have such a
clear mathematical meaning, so it needs to be experimentally
determined to encoding length hyperparameters.
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Figure 6. Based on (a) polar coordinate decomposition, we define
(b) a 2-dimensional wrapping function f(θ).

Table 6. Ablation study of different encoding mode.

ω = 1 ω = 2 ω = 4
HRSC2016 DOTA

AP50 AP75 AP50 AP75

88.26 62.95 71.97 26.11
✓ 90.44 (+2.18) 78.90 (+15.95) 73.51 (+1.54) 39.29 (+13.18)

✓ 90.58 (+2.32) 86.12 (+23.17) 73.08 (+1.11) 39.62 (+13.51)
✓ 24.90 (-63.36) 20.82 (-42.13) 35.50 (-36.47) 17.29 (-8.82)

✓ ✓ 90.55 (+2.29) 87.77 (+24.82) 74.51 (+2.54) 40.49 (+14.38)

8. Determination of Angular Frequency
8.1. Perspective 1: Complex Function

To determine the appropriate ω, we discuss the relationship
of fbox ∼ fobj as following:

fbox = eiωθbox = eiω(θobj mod π)

=

{
eiωθobj , θobj ∈ [0, π)

eiωθobj · e−iωπ, θobj ∈ [π, 2π)

(16)

1) When ω = 2, e−iωπ = 1, then

fbox = eiωθbox

=

{
eiωθobj , θobj ∈ [0, π)

eiωθobj , θobj ∈ [π, 2π)

= fobj

(17)

2) When ω = 1, e−iωπ = −1, then

fbox = eiωθbox

=

{
eiωθobj , θobj ∈ [0, π)

− eiωθobj , θobj ∈ [π, 2π)

=

{
fobj , θobj ∈ [0, π)

− fobj , θobj ∈ [π, 2π)

= fobj · sign(π − θobj)

(18)

Through further derivation of the formula, we can find
that 1) When ω = 2, Eq. (16) can be simplified to a straight-
forward fbox = fobj . f becomes a consistent attribute for
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Figure 7. Waveform analysis: (a) original angular relationship between box and object. (b) based on polar-coordinate mapping, we define a
2-dimensional en/decoding function f(·). It will compound onto the original sawtooth wave θbox = θobj (mod π), and exhibits different
effect for rectangular(top, T = π) & square-like(bottom, T = π

2
) objects when angular frequency ω = 1, 2, 4. The target and prediction

are marked as solid line and dash line, respectively. Areas of inaccurate angular prediction are highlighted in gray. The optimal angular
frequency for rectangular & square-like objects is 2 and 4, respectively.

both box and object, and it is perfectly in line with our design
goals; 2) When ω = 1, Eq. (16) can be just simplified to a
fobj · sign(π− θobj). fbox and fobj has a simple relationship
but still with breakpoints; 3) When ω ̸= 2 and ω ̸= 1, e−iωπ

is no longer a real factor, which makes Eq. (16) difficult to
simplify, and fbox ∼ fobj difficult to analyze. To sum up,
we finally choose ω = 2 in ACM.

8.2. Perspective 2: Polar Mapping

From the perspective of polar-coordinate mapping, ACM has
more clear mathematical meaning and simple real number
expression, so that we can carry out more direct analysis.
Although the single dimensional cos(ωθ) and sin(ωθ) are
many-to-one, integration of them can achieve a one-to-one
effect in a higher dimension, making f an reversible trans-
formation. Due to polar coordinate decoding can get unique
angle only in a single cycle, ωθ ’s range [0, ωπ) ⊆ [0, 2π),
so it is necessary to satisfy ω ≤ 2.

With encoding operation, original relationship θbox ∼
θobj (Fig. 7a) becomes fbox ∼ θobj (Fig. 7b), where fbox is
the result of encoding function f(·) applied on θbox. Thus,
the waveform of fbox ∼ θobj at [0, 2π) is equivalent to
repeating the encoded sin / cos waveform at [0, π) twice,
due to the sawtooth wave of θbox ∼ θobj .

Obviously, the main issue of ω > 2 (e.g. ω > 4) lies
in the incomplete decoding range, which will have a se-
rious impact on angular prediction. In the valid angular
frequency range, only when ω = 2, both encoding compo-
nents are smooth (continuous and with continuous gradient)
at θobj = π. It indeed completely eliminates the breakpoints
in the components and thus completely solves the boundary
problem; otherwise (ω ̸= 2), there is always be breakpoints
in the components. Specially, when ω = 1, although its

cosinoidal component is continuous, its sinusoidal compo-
nent do not include any breakpoints, which is equivalent
to partially solving the problem. Therefore, decoded angle
waveform is significantly closer to the perfect sawtooth wave
compared with original prediction (Fig. 7a), but there is still
a gap compared with ω = 2.

By comparing prediction(dash lines) with ground-
truth(solid lines) in Fig. 7b(top), we can find once ground-
truth of wrapped value contains breakpoints, its prediction
will become significantly worse, and according unwrapped
angle, too. Finally, only ω = 2 is the optimal choice that
makes f continuous, differentiable, and reversible for rect-
angular objects.

8.3. Perspective 3: Experiments

Although we have analyzed from two different perspec-
tives that ω = 2 is the more appropriate angular frequency,
the experiment is destined to be the more direct perspec-
tive. We conducted experiments with angular frequencies
(ω = 1, 2, 4), as is shown in Tab. 6. Compared with origi-
nal KFIoU [38], enhanced version with ACM(ω = 1) get
remarkable improvement since sinusoidal component in de-
composition of the angle has no breakpoints for rectangles.
It is consistent with the phenomenon (the smaller distor-
tion area) observed in the en/decoding waveform diagrams.
Moreover, ACM(ω = 2) eliminates all breakpoints in both
two components in decomposition of the angle for rect-
angles, so it achieves greater improvement. Due to the
inability to unwrap the full angular range for rectangles,
ACM(ω = 4) exhibits severe performance degradation, es-
pecially for HRSC2016 dataset consisting entirely of large
aspect ratio ships. When adopted the fusion of two angular
frequencies simultaneously (ω = 2, 4, details in Sec. 8.5



below), compared to ω = 2, the results have little effect
on large aspect ratios objects on HRSC2016 dataset and
the results have slightly improved on DOTA dataset. This
is because the DOTA dataset contains both large aspect ra-
tio objects and square-like objects. Overall, AP (especially
AP75) can benefit a lot from ACM, which verifies our anal-
ysis. In following experiments, we adopt mixed angular
frequencies (ω = 2, 4).

8.4. Extension to Square-like Object

When the value of the object’s width and height are close to
each other, the bounding box will become a square-like from
rectangle, which possesses stronger symmetry and leads to
the period of Bangle shrinking from π to π

2 . As a result,
breakpoints will occur at more locations (i.e., π

2 , π, and 3π
2 ).

In this case, if we continue to use Angle Correct Module
proposed in the previous section, we should set ω to 4 ac-
cordingly, as is shown in Figure 7b(bottom). It is worth
noting that when ω = 2, breakpoints still exist in fx at
Oangle = π

2 , π,
3π
2 , while fy suffers from gradient break-

points at these positions although it is continuous, which is
similar to the case of ω = 1 for the rectangle.

8.5. Generalization for Varied Aspect Ratio

Considering that the actual scene contains both square-like
and rectangular objects, we attempt to use wrapped values
with two frequencies (denoted as f (ω), where ω = 2, 4)
simultaneously and fuse the unwrapped results to obtain
a more accurate angular prediction. Similar strategies can
also be found in previous work [41, 50]. For boxes rotated
within [0, π

2 ), both f (2) and f (4) can unwrap correct an-
gles. For boxes rotated within [π2 , π), f

(2) still unwraps
correctly, while f (4) ’s unwrapped angles will be offset by
one decoding-period π

2 to fall in [0, π
2 ). Therefore, ideally

the difference between θ(2) ∈ [0, π) and θ(4) ∈ [0, π
2 ) could

only be 0 or π
2 , but it only affects rectangle (T = π) and not

square-like (T = π
2 ) in both training and inference phase.

Note that f (2) suffers from breakpoints only for square-like
rather than rectangle, and f (4) is immune to breakpoints for
both rectangle and square-like, which just fails to correctly
determine period range belonging to angles. Thus we can
utilize coarse θ(2) to correct the period range of fine θ(4) as
follows, where relaxation condition outside the parentheses
are adopted in practice due to the independent errors of f (2)

& f (4). Finally, we use this fusion strategy to adapt objects
with varied aspect ratio.

θ =

{
θ(4) + π

2 , if θ(2) − θ(4) > π
4 (θ(2) − θ(4) = π

2 )

θ(4) , if θ(2) − θ(4) ≤ π
4 (θ(2) = θ(4))

(19)
where the inequality condition (e.g. θ(2)−θ(4) > π

4 ) is just a
relaxed version of the equality condition (e.g. θ(2) − θ(4) =

π
2 ). The latter is just the judgment condition in the ideal
state, while the former is actually adopted in practice, which
brings better numerical stability.
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