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Supplementary Material

We elaborate more details about our network architec-
ture designs in Section 7. Section 8 provides additional
implementation details and experimental results. Finally,
limitations and ethics are discussed in Section 9.

7. Architecture Details

We use HRNet-W48 [60] as the CNN backbone. The archi-
tectures of LatentNet in HypoNet and ScoreNet share the
same design, where the encoder consists of a linear layer,
GroupNorm [69], LeakyReLU, and a dropout, and encodes
3D joint position J and twists Φ into latent feature Fp. Sub-
sequently, LatentNet concatenates Fp with the pixel-aligned
sampled local feature F̂l and outputs the concatenated fea-
ture F, which is then fed into HypoFormer or ScoreFormer.
The HypoFormer also shares the same architecture design as
ScoreFormer.

The HypoFormer/ScoreFormer is based on the
Transformer-encoder architecture [65], containing B = 6
basic blocks. Each basic block consists of three units: a
Multi-Head Self Attention (MHSA) unit, a Multi-Head
Cross-Attention (CA) unit, and a Feed-Forward-Network
(FFN) [65] unit. Both the MHSA and CA units are equipped
with 8 attention heads. In the MHSA units, the query, key,
and value inputs for the multi-head attention layer are the
concatenated feature F from LatenNet. For CA units, the
query input is the output of the MHSA units, while the
key and value inputs are the global image feature Fg. The
hidden layers in the FFN units are configured with the
channel number of 2048.

Finally, the decoder in HypoNet consists of one linear
layer. The scorer in ScoreNet is designed as an MLP in-
cluding a dropout layer, a hidden layer with 1024 channels,
GroupNorm, and LeakyReLU.

8. Experiments

8.1. Datasets

H3.6M [21] Following previous works [22, 29, 30, 33],
we use the SMPL parameters generated from MoSh [41].
Following standard practice [22], we evaluate the quality
of 3D pose of 14 joints derived from the estimated mesh.
We report Mean Per Joint Position Error (MPJPE) and PA-
MPJPE in millimeters (mm). PA-MPJPE uses Procrustes
algorithm [18] to align the estimates to GT poses before
computing MPJPE. To evaluate the quality of 3D mesh, we
also report Mean Per Vertex Error (MPVE) which can be
interpreted as MPJPE computed over the whole mesh.

3DPW [66] We use the SMPL parameters obtained by
using IMUs officially. Following [38, 39], we use the train
set of 3DPW for model training and evaluate on the test set.

MPI-INF-3DHP [47] is a 3D pose dataset with 3D GT
pose annotations. Following [22, 29, 33], we only use the
GT pose annotation for 2d pose supervision (Eq. (8)) and
diffusion noise supervision (Eq. (6)), since this dataset does
not provide 3D mesh annotations.

COCO [40] is a large wild 2D pose dataset. We use the
pseudo SMPL mesh annotations provided by [49]. Since
the pseudo 3D mesh annotations are not accurate, while
joints regressed from meshes align well with the image if we
project them to 2D images, we only use the regressed joints
for supervision.

UP-3D [32] is a wild 2D pose dataset. The 3D poses
and meshes are obtained by SMPLify [6]. As the fitted
meshes are not accurate, we only use the joint annotations
for training.

MPII [2] is a wild 2D pose dataset. We use the pseudo
SMPL mesh annotations generated by CLIFF [37]. Due to
the inaccuracy of these pseudo mesh annotations, we only
use the projected joints for supervision.

8.2. Implementation Details

We implement the proposed method with PyTorch [51]. All
the experiments are conducted on a Linux machine with
2 NVIDIA A800-PCIE-80GB GPUs. We follow the def-
inition of joint and twist in HybrIK [33], which involves
extending the original 24 SMPL joints with 5 additional
vertices for the head, feet, and hands, and defining φ = 23
twists for 23 limbs. We perform common data augmenta-
tion including random rotations, scaling, horizontal flipping,
random occlusion, and color jitter, following HybrIK [33].
We train HypoNet for 50 epochs with a batch size of 160,
and ScoreNet for 10 epochs with a batch size of 80. For the
training of HypoNet, the loss weights were set as follows:
λnoise = 1, λβ = 10, and λ2d = 40. To train ScoreNet, the
loss weights are λj = 1, λv = 1, λrank = 1, and λ2d = 1.

For the diffusion process in HypoNet, we set the training
time range to T = 1000 and employ a linear schedule for β:

βt = β0 + t · (βT − β0). (15)



Data amount MPVPE↓ MPJPE↓ PA-MPJPE↓
full 84.6 72.4 44.5
1/16 89.0 76.3 45.8
1/64 92.1 78.9 48.7
1/256 93.9 80.6 48.9

Table 5. Ablation study on different amounts of training data.

We set β0 = 0.0001 and βT = 0.02. During inference, we
adopt the DDIM acceleration technique [58] and take 4 steps
for the whole reverse diffusion process.

8.3. Additional Quantitative Results

Amount of training data We further investigate the ro-
bustness of our framework to the amount of training data.
By systematically sampling the complete dataset at ratios
of 1/16, 1/64, and 1/256, we evaluate the performance of
our framework in Table 5 obtained using ScoreNet with
M = 100 hypotheses. Remarkably, our framework show-
cases its resilience to data reduction, as it maintains impres-
sive performance even with a significantly reduced amount
of training data. Notably, when utilizing only 1/256 of the
data, which corresponds to approximately 2,000 data sam-
ples, our framework continues to deliver exceptional results.

Same training data as ProHMR [28] Note that the
datasets used in existing works vary, we present our results
in Table 1 as a proof of concept. Additionally, we report
the minMPJPE and minPA-MPJPE of M hypotheses on the
3DPW test set [66] by using the same training datasets as
ProHMR [31] in Table 6. The baseline results are obtained
using their official codes and instructions.

M
ProHMR [31] HuManiFlow [56] Ours

MPJPE PA-MPJPE MPJPE PA-MPJPE MPJPE PA-MPJPE
5 91.4 57.0 79.5 50.7 75.3 47.4
10 88.9 55.0 75.6 47.9 71.7 45.2
25 85.1 52.1 71.9 44.5 67.8 42.5

100 80.1 48.1 65.1 39.9 62.9 39.1
200 77.9 46.5 64.5 38.8 60.7 37.1

Table 6. Comparison to the state-of-the-art probabilistic methods on
3DPW datatset [66] by using the same training datasets as ProHMR
[31]. The baseline results are obtained using their official codes
and instructions.

Same evaluation method as Biggs et al. [5] We report the
results by following a common practice proposed in Biggs
et al. [5] in Table 7, where we first generate M = 4, 096
hypotheses and then “quantize” them to n hypotheses using
K-Means. This practice reduces the variance in performance
when generating the hypotheses. Our method achieves supe-
rior performance.

Quantization Biggs et al. [5] ProHMR [28] Ours
n MPJPE PA-MPJPE MPJPE PA-MPJPE MPJPE PA-MPJPE
1 93.8 59.9 96.5 59.8 74.9 45.0
5 82.2 57.1 90.8 56.5 72.3 42.8

10 79.4 56.6 88.4 54.6 70.8 41.8
25 75.8 55.6 85.2 52.4 68.8 39.9

Table 7. Comparison to the state-of-the-art probabilistic methods
on 3DPW datatset [66] by using the same evaluation method as in
[5].

8.4. Additional Qualitative Results

Variability in hypotheses We visualize 10 hypotheses of
two cases in Figure 6. For each case, we display the input
image, 2D projected meshes, normalized variance for all
vertices, the 3D view, and a zoom-in, from left to right.
The rightmost shows the variance bar. While our estimates
projected back to 2D for the visible parts are well-aligned,
noticeable diversity persists in 3D (blue box). In occluded
regions (e.g.the right hand in the left case), a wider range of
reasonable estimates is observed.

1 

0 

Figure 6. Visualization of variability in hypotheses with M = 10.
Best viewed zoomed-in on a color screen.

We show additional qualitative results on challenging
in-the-wild images in Figure 8. It is noticeable that the multi-
hypotheses generated by HypoNet align well with the 2D
observations, and the final results selected by ScoreNet are
more reasonable, highlighting the robust generalization ca-
pabilities of our method. Please refer to https://xy02-
05.github.io/ScoreHypo for more qualitative re-
sults.

9. Discussion
9.1. Limitations

Our method is model-based by using the SMPL model [42],
which has limitations when tackling extreme body types due
to the lack of training data. We show a typical failure case
in Figure 7, where our estimate has a slimmer body shape.



Figure 7. A typical failure case of our method. Due to the lack
of training data with diverse body shapes, our method struggles to
handle extreme body shapes.

More diverse training data may alleviate this issue.

9.2. Ethics

In our experiments, we use public datasets that have IRB ap-
proval, adhering strictly to their licensing requirements. The
method proposed in this paper does not violate ethical prin-
ciples and has no harm to society. It is in strict compliance
with relevant standards and regulations.



Figure 8. Qualitative results on challenging in-the-wild images. The yellow and blue-colored meshes are the generated results of HypoNet,
while the green ones are the final results selected by ScoreNet. The last column overlaps the multiple estimates to unveil their differences.
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