
A. Pseudo-code for ASOT
In Alg. 1, we present pseudo-code around the numer-

ical solver for our action segmentation optimal transport
(ASOT) algorithm. Our approach is based on projected mir-
ror descent, similar to Peyre et al. [30]. We initialize the
coupling T element-wise as Tij = 1/(NK). Each itera-
tion then involves two steps, given by

1. Update step (Lines 6–16): The first-order update step
is computed as a mirror descent step under the KL-
divergence. The update step at iteration t is given by
T̂t+1 = Tt ⊙ exp(−ϕ∇t

TFASOT(C,Tt)), where ϕ >
0 is a step size and

FASOT(C,T, ϵ) :=FFGW(C,T)+

λDKL(T
⊤1n∥q)− ϵH(T). (8)

2. Projection step (Lines 10–15): The projection step
involves ensuring the polytope constraints are satisfied.
This involves simply rescaling the rows of T, to sat-
isfy the frame-wise marginal constraint, i.e., T t+1

ij =

piT̂
t+1
ij /(T̂t+11K)i.

Algorithm 1 Action Segmentation Optimal Transport

Input: Video frame to action class affinity matrix Ck ∈
RN×K , derived from a video encoder and hyperparam-
eters α ∈ [0, 1], r ∈ [0, 1], λ ≥ 0, ϵ > 0, ϕ > 0,
niter > 0.

Output: Soft assignment probabilities T⋆ ∈ RN×K
+ .

1: function ASOT(Ck, α, r, λ, ϵ, ϕ, niter)
2: p← 1

N 1N ▷ Frame marginals
3: q← 1

K1K ▷ Balanced action marginals
4: Construct Cv , Ca using (5).
5: C = {Ck,Cv,Ca}
6: T0 ← p⊗ q ▷ ⊗ denotes the outer product
7: for t← 0 to niter − 1 do
8: T̂t+1 = Tt ⊙ exp(−ϕ∇TFASOT(C,Tt))

9: T t+1
ij = piT̂

t+1
ij /(T̂t+11K)i ∀i, j

10: end for
11: return Tniter

12: end function

We provide a full reference implementation for ASOT
and training code at https://github.com/mingu6/
action_seg_ot.

B. Additional Details for Unsupervised Exper-
iment

For both the training (pseudo-labelling) and inference
phases, we use 25 iterations for projected mirror descent

(see Sec. A). We use the same Gromov-Wasserstein (GW)
radius parameter r across training and inference, which is
set at 0.04 for all datasets except for desktop assembly,
which is set at 0.02. We observed that desktop assembly
has smaller ground truth segments relative to video length,
benefiting a lower value for r.

ASOT pseudo-labelling. The ASOT hyperparameters
used to generate pseudo-labels during the training phase
of our unsupervised action segmentation pipeline are de-
scribed as follows. The GW structure weight α is set to
0.3 for all datasets except for Breakfast where α = 0.4 and
furthermore, entropy regularization weight ϵ = 0.07 for all
datasets. Table 4 presents the remaining hyperparameters.

ASOT inference. The hyperparameters used to generate
segmentations from embeddings learned from our unsuper-
vised learning pipeline are described as follows. First, we
set the unbalanced weight λ to a low value (0.01) for all
datasets. At inference, ASOT will segment according to the
underlying learned embeddings, and will not encourage a
more balanced assignment to action classes. Second, we set
α = 0.6 for all datasets except for Breakfast where α = 0.7,
because a higher value for α results in stronger temporal
consistency due to heavier weighting of the GW structure
objective. Finally, we set ϵ = 0.04, since lower levels of
entropy regularization yields sharper segmentations.

Representation learning. We set the learning rate at
10−3 and weight decay to 10−4 for all datasets. We sam-
ple a batch of 2 videos, where for each video, we sample
256 frames randomly by partitioning each video into 256
uniform intervals and sampling a single frame from each
interval. Our MLP architecture has a single hidden layer
with ReLU activations. The hidden layer size is 128 for all
datasets, with an output feature dimension of 40, with the
exception of YouTube Instructions (YTI), which have sizes
32 and 32, respectively. Output features are l2-normalized
before applying ASOT. The smaller model size from YTI
arises from the significantly higher dimensional input fea-
tures compared to the remaining datasets.

BF YTI FS (M) FS (E) DA
Unbalanced (λ) 0.1 0.12 0.15 0.11 0.16
Global prior (ρ) 0.2 0.15 0.15 0.15 0.25
Num. epochs 15 10 30 30 30

Table 4. Hyperparameter settings for ASOT used to generate
pseudo-labels in the training phase of our unsupervised action seg-
mentation pipeline. FS (M) and FS (E) represent the 50 Salads Mid
and Eval splits, respectively.

https://github.com/mingu6/action_seg_ot
https://github.com/mingu6/action_seg_ot


Dataset 50 Salads (Mid) 50 Salads (Eval) Desktop Ass.
MoF (%) (43.0, 1.9) (56.4, 2.8) (62.9, 2.8)

Table 5. MoF results for five runs recorded as (mean, std. err.).

C. Experimental Setup (Supervised)
For the supervised example, the MS-TCN [28] architec-

ture outputs logits L ∈ RN×K directly instead of video
frame and action embeddings. We can transform these log-
its into a cost matrix Ck using

Ck
ij = 2

(
1− Lij − Lmin

Lmax − Lmin

)
, (9)

where Lmax := maxi,j Lij and Lmin := mini,j Lij . This
is a simple method for converting the logits which model a
frame/action affinity into a cost matrix with elements scaled
between [0, 2].

We then apply ASOT to the cost matrix derived per video
with hyperparameters λ = 0.05, α = 0.4, ϵ = 0.06 and r =
0.01. We evaluate our method using 5-fold cross validation,
similar to [28].

D. Additional Sensitivity Analysis
In addition to the sensitivity analysis under the MoF met-

ric presented in Fig. 5, we present additional results for F1-
score and mIoU in Fig. 7 and 8, respectively. The results
follow very similar trends to MoF, however it is notable in
Fig. 8a that mIoU performance collapses to almost 0 for
λ = 0, whereas MoF does not (see Fig. 5a). This is espe-
cially notable for the FS (Eval) dataset. This discrepancy
between MoF and mIoU suggests the presence of unbal-
anced classes within the datasets, especially FS (Eval).

E. Reproducibility
Our results in Tab. 1 and 2 were produced using one run,

consistent with prior works in unsupervised action segmen-
tation [22, 23, 26, 36, 40, 42]. To show the robustness of our
methods, we used five runs on the 50 Salads and Desktop
Assembly datasets with different random seeds. Differing
random seeds impact the network initialization and sam-
pling of batch indices for our training pipeline. We report
the results of this experiment in Table (mean, std. err.) for
the MoF metric (cf. Tab. 5).
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Figure 7. Sensitivity analysis reporting F1-score on ASOT hyper-
parameters.
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Figure 8. Sensitivity analysis reporting mIoU-score on ASOT hy-
perparameters.
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