
Transferable and Principled Efficiency for Open-Vocabulary Segmentation

Supplementary Material

6. Experimental Details

6.1. Fine-tuning Settings After Transfer

This section provides a detailed introduction to the experi-
mental settings for all three transfer experiments. The ex-
perimental settings used for Han et al. and Deeplabv3 are
identical. We trained the models on the COCO panoptic
dataset for 50,000 iterations using four 4090 Ti GPUs. The
training was performed with a batch size of 28, utilizing
the SGD optimizer with an initial learning rate of 0.00015.
The learning rate was reduced by a factor of 0.1 at 40,000
iterations and 45,000 iterations. For FC-CLIP, we conducted
training for 368,750 iterations using eight 4090 Ti GPUs.
The training was performed with a batch size of 16, utilizing
the AdamW optimizer with an initial learning rate of 0.0001.
The learning rate was reduced by a factor of 0.1 at 327,778
iterations and 355,092 iterations.

6.2. Training FLOPs Calculation

To calculate the training FLOPs of our model backbone, we
consider both the forward and backward processes. When
calculating the backward FLOPs, we need to compute gra-
dients for both model parameters and the hidden features.
Hence, the FLOPs involved in the backward process will be
doubled compared with the FLOPs of the forward process1.
Suppose the inference FLOPs of the model is C. We pro-
vide a comprehensive calculation approach below where our
subnetwork has a sparsity of 10% and 50% of the layers are
frozen during fine-tuning:
1. Standard Fine-tuning: forward FLOPs 1×C, backward

FLOPs 2×C.
2. Model with layer-wise fine-tuning: Frozen layers: for-

ward FLOPs 1×C, backward FLOPs 1×C. Active layers:
forward FLOPs 1×C, backward FLOPs 2×C.

3. Model with subnetwork: forward FLOPs 0.1×C, back-
ward FLOPs 1.1×C (1 for hidden features, 0.1 for sparse
weights).

4. Model with layer-wise fine-tuning and subnetwork:
Frozen layers: forward FLOPs 0.1×C, backward FLOPs
1×C. Active layers: forward FLOPs 0.1×C, backward
FLOPs 1.1×C (1 for hidden features, 0.1 for sparse
weights).

To calculate the FLOPs of specific layers, we utilize the
“get model complexity info” function provided by the
ptFLOPs library2.

1https://epochai.org/blog/backward-forward-FLOP-ratio
2https://pypi.org/project/ptflops/

6.3. Visualizations of Heavy-tail Behaviors in Effi-
cient Fine-tuning

Our Fig. 4 provides a comprehensive overview of the layer-
wise fine-tuning implementation process. Fig. 6 showcases
the α value for each layer in our backbone before fine-tuning
(after pruning, before adopting sparse masks). Layers of
α below the red horizontal line (median value of α across
layers) will be frozen during fine-tuning. Additionally, Fig. 7
illustrates the changes in the median of α values throughout
the entire fine-tuning process under our training method. It
is evident that the α value of most layers remains relatively
stable, leading us to not dynamically calculate α or adjust
our fine-tuning layers in the main experiment.

7. Futher Experiments
7.1. Ablation Study on Different Knowledge Distil-

lation Losses

In the method presented in Sec. 3.1, a loss function is in-
troduced to align the text with the vision feature space.
This loss, referred to as text-guided knowledge distillation
(TGKD), facilitates the distillation of knowledge from tex-
tual information into visual embeddings. The process of
text-guided knowledge distillation can be formulated as fol-
lows:

LTGKD =
1

N

N∑
i=1

N∑
j=1

∥∥∥(∥Vi−R(I,Mj)∥−∥T (Yi)−T (Yj)∥)
∥∥∥,

(3)
where T denotes the CLIP text encoder, R denotes the CLIP
image encoder, Vi denotes the visual embeddings and Yi is
the category name of i-th ground truth region. I represents
the input image, while M represents the mask corresponding
to the respective category. Correspondingly, a vision-guided
knowledge distillation approach has also been proposed,
which can be formulated as follows:

LV GKD =
1

N

N∑
i=1

N∑
j=1

∥∥∥(∥Vi −R(I,Mj)∥−∥Vi −Vj∥)
∥∥∥, (4)

Tab. 5 provides a comprehensive comparison of the results
obtained from pruning using two distinct distillation losses.
The analysis demonstrates that the utilization of text-guided
distillation loss significantly enhances the OVS performance
of the model.

7.2. Ablation Study on Pruning Strategies

We further study two pruning strategies. The first strategy is
to naively apply IMP to prune the model using all training



Figure 6. Layer-wise α values in model backbone before fine-tuning used in Sec. 4.3. Specifically, the blue curve represents the calculated
α value for each layer of Resnet, while the red line represents their median. During the fine-tuning process, we freeze the layers that have
values smaller than the median.

Figure 7. The median value of layer-wise α during the fine-tuning
process. We can see α remains relatively stable without significant
changes.

Table 5. Comparison of different distillation loss: LTGKD vs.
LV GKD .

Distillation Loss COCO PC-59 ADE20k-150
Text-guided (LTGKD) 42.5 35.1 15.8
Vision-guided (LV GKD) 40.0 32.6 14.2

losses (distillation loss plus mask loss and classification loss).
The second strategy, which is proposed in our Sec. 3.2,
first obtains subnetworks based on the semantic-agnostic
distillation loss, and subsequently fine-tunes the model for a
specific number of iterations.

Tab. 8 provides experimental details. The results demon-
strate that the adopted pruning with fine-tuning method not
only improves OVS performance but also requires fewer
training iterations. Additionally, the subnetworks obtained

Table 6. Ablation study of different configurations for pruning with
both distillation and segmentation loss. Pruning ratio (p) and the
number of training iterations (t) used in Algorithm 1 were studied.

p t COCO Cityscapes ADE20K-150 PAS-20 PC-59
0.1 5000 40.6 29.1 15.0 60.1 33.0
0.1 2500 36.9 28.9 13.8 54.8 32.0
0.2 5000 32.1 27.8 11.6 50.4 27.8

Table 7. Ablation study of different configurations for pruning with
only distillation loss followed by segmentation fine-tuning (our
strategy in Sec. 3). Pruning ratio (p) and the number of training
iterations (t) used in Algorithm 1 were studied.

p t COCO Cityscapes ADE20K-150 PAS-20 PC-59
0.1 5000 41.8 31.8 15.4 63.2 35.1
0.1 1000 41.9 32.7 15.0 63.9 35.1
0.1 100 42.4 31.0 14.3 63.2 34.8
0.3 1000 40.4 28.9 13.7 61.4 33.6
0.5 1000 39.8 30.3 13.6 60.7 33.3

without semantic supervision exhibit the ability to be further
fine-tuned in the original model and can also be effectively
transferred to other tasks, yielding superior experimental
results (as shown in Tab. 1).

Ablation Study on Pruning Configurations. We also
study the best configuration of t and p of two pruning strate-
gies discussed above. Ablation studies on the first pruning
strategy (distillation + segmentation loss) are shown in Tab. 6.
It is important to highlight that reducing the value of t or
increasing the value of p has a substantial impact on the
performance, leading to a noticeable drop.

Additionally, for our pruning strategy (pruning with distil-
lation only, followed by segmentation fine-tuning), different



Figure 8. More visualizations of examples on the PC-59. “GT”: ground truth.



Table 8. We compare the segmentation performance (mIoU) of two
strategies for finding sparse models: 1) pruning with both distilla-
tion and segmentation loss; 2) our pruning (with only distillation
loss) followed by segmentation fine-tuning (Sec. 3). The “Training
Iters” parameter represents the total number of training iterations
required by each of the two methods.

Pruning Method COCO PC-59 ADE20k-150 Training Iters.

Pruning (distillation
+ segmentation loss)

40.6 33.0 15.0 105000

Pruning (distillation only)
+ Segmentation Fine-tuning

42.5 35.1 15.8 95000

Table 9. CKA similarity between CLIP image encoder and
DeeplabV3 backbones.

DeeplabV3 Sparse DeeplabV3 (Ours)
CKA (vs. CLIP) 0.361 0.512

Table 10. Ablation study of freezing ratio

Ratio COCO Cityscapes ADE-150 ADE-847 PAS-20 PC-59 PC-459
0.25 47.5 34.5 17.3 2.9 72.5 39.6 7.6
0.75 46.5 34.8 17.4 2.8 72.6 38.9 7.5
0.5 47.2 34.0 17.3 2.9 74.0 39.9 7.7

Figure 9. α changes before and after finetuning.

configurations are studied in Tab. 7. Initially, a pruning rate
(p) of 0.1 was used, while different values of t were em-
ployed. The performance on the COCO dataset was found
to be very similar across different t values. However, when t
was reduced to a very small value, a significant drop in perfor-
mance on the OVS datasets was observed. This observation
further supports the claim that the subnetwork discovery
method proposed in Sec. 3.2 is advantageous for the OVS
task. If t is kept constant and the pruning rate is increased,
it will result in IMP finding subnetwork with lower quality.
It is worth noting that the final sparsity of the subnetworks
discovered by different pruning rates will vary, making di-
rect comparisons between them relatively unfair. However,
this disparity is inevitable given the different pruning rates
employed.

7.3. Ablation Study Implementation details

In this section, we conduct several ablations to justify the
design choices of our proposed methods.
Compare with other compression methods In Tab. 1, we

mainly compare our method with random pruning, since it
can also be transferred to different models without incurring
any additional costs. In Tab. 8, we compare our method with
the established pruning technique IMP. Our approach outper-
forms IMP in terms of both performance and training time.
Moreover, our subnetwork exhibits transferability, allowing
for faster training across different segment architectures.
OVS capability analysis Our core method leverages the
benefits of our transferable subnetwork to improve OVS
performance and enable enhanced open-set knowledge dis-
tillation from CLIP. As shown in Tab. 9, by adopting our
subnetwork, DeeplabV3 can achieve more similar features
with CLIP than the baseline, measured by Centered Kernel
Alignment (CKA) similarity averaged over layers [9].
Analysis of freezing layers As shown in Fig. 9, compared
with early layers, α of deeper layers undergo more changes
during fine-tuning, gradually becoming more “well-trained”
as their αs decrease [34].

Based on the implicit self-regularization in deep net-
works [34], weight matrices with α < 2 are generally consid-
ered “over-trained” and more prone to overfitting. Therefore,
in our supplementary Figure 6, we observe certain layers
with α < 2. Freezing these layers during fine-tuning pro-
vides benefits, as it helps prevent overfitting. We also provide
different ratios of freezing layers in Tab. 10. Users can adjust
this ratio flexibly according to their own needs.

7.4. More Qualitative Results

Building upon the findings in Sec. 4.6, we present additional
qualitative results in this section, along with a comparison to
the ground truth. Fig. 8 illustrates a specific case where our
model demonstrates robust OVS performance by accurately
labeling some parts that are not labeled in the ground truth.
This exemplifies the effectiveness of our model in accurately
predicting labels even in challenging scenarios where ground
truth annotations may be incomplete.


