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A. Quantitative Comparison
In the section, we present quantitative results of our

method with state-of-the-art camera-based methods such as

MonoScene [2], VoxFormer [8], TPVFormer [5], and Occ-

Former [13] on the validation sets of SemanticKITTI [1].

Semantic scene completion. As illustrated in Table 1,

Bi-SSC surpasses VoxFormer-T in semantic scene under-

standing, exhibiting a significant performance gap. Further-

more, when compared to VoxFormer-T, which relies on his-

torical observation data, Bi-SSC leverages binocular depth

information to achieve a substantial relative mIoU improve-

ment of 22.77%. It is worth noting that in 3D scenes, the

precise comprehension of object semantics is pivotal for an

accurate representation of the real world, as misunderstand

could lead to erroneous decisions. Consequently, in prac-

tical camera-based applications, our approach is preferable

to others.

Scene completion. The holistic scene analysis reveals

that Bi-SSC also excels in scene completion, as shown in

Table 1. Its IoU outperforms both monocular and binocular

methods. Compared to the state-of-the-art VoxFormer-T,

Bi-SSC exhibits a remarkable 0.73 increase in IoU, with

an even wider performance margin compared to single-

purpose methods. Notably, the values of IoU and mIoU

are intertwined, and inaccurate scene completion can ad-

versely impact the semantic understanding of the entire

scene. In contrast, our approach demonstrates exceptional

performance in both geometric and semantic aspects.

B. Qualitative Comparison
Figure 1 presents more visualizations. It is important to note

that as we do not have access to the specifics of the test set,

we can only visualize the results obtained from the valida-

tion set. Our approach demonstrates superior performance

compared to other camera-based methods, particularly in

heavily obscured or highly cluttered scenes. VoxFormer-T

* Equal contributed. † Corresponding authors.

[8] exhibits a significant number of missing objects beyond

the image line of sight. Notably, as depicted in the second

and fourth lines of Figure 1, an observation is made that

the road cannot be fully reconstructed on the left and right

sides, while ours can be semantical scene completed bet-

ter. Concurrently, our method excels in capturing intricate

3D details on dense objects, illustrated in the last line of

Figure 1, where the outlines of vehicles and tree trunks are

more accurately segmented.

C. More Ablation Study

Figure 2 shows the visualized results of using the SSF we

designed versus using the attention mechanism baseline.

Compared to the attention baseline, our SSF can be seen

as an effective way to mitigate occluded areas in the SSC.

As can be seen more clearly from the figure, SSF is good

at recovering object structure and reasoning about the inter-

section between adjacent semantic classes. For example, in

the first row of Figure 2, the road surface is more complete,

and the spatiality deduced by SSF is much better when the

tree and the car block each other.

D. Comparison Against 2.5/3D-input Baselines

We compared Bi-SSC with some original 2.5D/3D input

baselines. In SemanticKITTI (hidden test set), the methods

in Table 2 use pseudo-3D information inferred from RGB as

input, and it can be observed that our model performs better

on the camera-based SSC task. In Table 3, the methods use

real 3D as input. Despite using image inputs with a hori-

zontal field of view (FOV) much smaller than the LiDAR

(82° vs. 180°), our completion capability is approaching re-

cent S3CNet models, and our segmentation ability is grad-

ually catching up to the 2.5D/3D input baselines. It can be

seen that our work is gradually closing the gap between 2D

and 3D. This observation is promising and encouraging for

SSC, since Bi-SSC only needs cheap cameras for its infer

process.
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mIoU

MonoScene [2] Mono 37.12 23.55 0.20 0.77 7.83 3.59 1.79 1.03 0.00 57.47 15.72 27.05 0.87 14.24 6.39 18.12 2.57 30.76 4.11 2.48 11.50

TPVFormer [5] Mono 35.61 23.81 0.36 0.05 8.08 4.35 0.51 0.89 0.00 56.50 20.60 25.87 0.85 13.88 5.94 16.92 2.26 30.38 3.14 1.52 11.36

OccFormer [13] Mono 36.50 25.09 0.81 1.19 25.53 8.52 2.78 2.82 0.00 58.85 19.61 26.88 0.31 14.40 5.61 19.63 3.93 32.62 4.26 2.86 13.46

VoxFormer-T [8] Stereo 44.15 26.54 1.28 0.56 7.26 7.81 1.93 1.97 0.00 53.57 19.69 26.52 0.42 19.54 7.31 26.10 6.10 33.06 9.15 4.94 13.35

Bi-SSC (Ours) Stereo 44.88 32.32 1.27 3.23 18.9 11.85 2.29 1.76 0.00 61.95 20.0 30.29 1.16 24.61 10.49 25.91 9.02 37.37 12.17 6.9 16.39

Table 1. Performance on the SemanticKITTI [1] validation set. We report the performance on semantic scene completion (SSC-mIoU)

and scene completion (SC-IoU) for our method and others. The best performing methods are marked in bold.

Method Input IoU(↑) mIoU(↑)

LMSCNet [9] x̂occ 31.38 7.07

3DSKetch [3] xrgb, x̂TSDF 26.85 6.23

JS3CNet [12] x̂pts 34.00 8.97

AICNet [7] xrgb, x̂depth 23.93 7.09

Bi-SSC (Ours) xrgb 45.10 16.73

Table 2. RGB-inferred for SeamnticKITTI dataset (hidden test

set).

Method Input IoU(↑) mIoU(↑)

SSCNet [10] xTSDF 29.80 9.50

LMSCNet [9] xocc 56.70 17.60

JS3CNet [12] xpts 56.60 23.80

S3CNet [4] xocc 45.60 29.50
Bi-SSC (Ours) xrgb 45.10 16.73

Table 3. Real 3D input inference in SemanticKITTI dataset (hid-

den test set).

E. Quantitative analysis at different ranges.

Our superiority in far-range regions. As shown in Ta-

ble 4, in the critical far region of the visual field blind-

ness, our method shows significant improvement over other

camera-based methods. Bi-SSC can obtain mIoU scores

of 17.98 and 14.13 in the ranges of 12.8-25.6 meters and

25.6-51.2 meters, which are 35.9% and 161.6% higher than

the state-of-the-art VoxFormer-T, respectively. In terms of

scene completion, the same better performance is achieved

compared to other methods. Such an improvement mainly

comes from the full exploitation of visual information.

Method IoU(↑) mIoU(↑)

12.8-25.6m 25.6-51.2m 0-51.2m 12.8-25.6m 25.6-51.2m 0-51.2m

OccFormer [13] 35.66 34.18 36.50 13.39 12.76 13.46

StereoScene [6] 41.07 37.97 43.85 14.93 13.71 15.43

VoxFormer-T [8] 54.00 24.87 44.15 13.23 5.4 13.35

Bi-SSC (Ours) 48.58 40.05 44.88 17.98 14.13 16.39

Table 4. Quantitative comparison at different ranges.

F. Mutual Interactive Aggregation Module De-
tails

Inspired by StereoScene [6], by utilizing the acquired stereo

features Fs and refined features Frefine, the Mutual Inter-
active Aggregation (MIA) module aims to mutually rein-

force and integrate their individual potentials, thereby ob-

taining the resulting new features.

Specifically, MIA is designed to guide interactively

through cross-attention mechanism, ensuring the acquisi-

tion of reliable predictions. Following the standard pro-

tocol [11], the refined features transformer into the query

Qrefine ∈ R
C×H×W , key Krefine ∈ R

C×H×W , and value

Vrefine ∈ R
C×H×W . Likewise, the stereo features are

transformed into Qs, Ks, and Vs representations and ge-

ometric features also are transformed into Qg , Kg , and Vg

representations. These transformations enable the utiliza-

tion of cross-attention operations, which can be mathemati-

cally expressed as:

CrossAtts(Qs,Krefine, Vrefine) = softmax(KT
refineQs)

(1)

Similarly, geometric features and refinement features are

calculated in this way:

CrossAttg(Qg,Krefine, Vrefine) = softmax(KT
refineQg)

(2)

Through two interactions to encourage reliable geometric

information transmission.

In the above cross-attention operation, the features after

cross-attention are first input into the residual CNN network



for regularization and channel number adjustment to gen-

erate a transform representing F ∈ R
C×D×H×W . Then

utilize average pooling to compress the depth dimension D
and spatial dimension H ×W , denoted as:

dc =
1

D ×H ×W

D∑

d=1

H,W∑

i=1,j=1

F (d, i, j) (3)

and the channel dependency was captured by the excitation

module, which is updated as:

d̂c = σ(C2δ(C1dc)) (4)

where the C1 and C2 represent 1×1×1 convolutions with

dimensionality-reduction. The σ indicates sigmoid gate and

the δ denotes standard GELU. By using point-wise convolu-

tion with the change feature F , we get the output. Formally,

Frefine = M(d̂c � F ) (5)

Where M consists of point-wise convolution of GELU acti-
vation and group normalization.
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Figure 1. Qualitative results in SemanticKITTI dataset. Our approach better captures the layout of the scene, it reconstructs and

estimates the geometry of the obscured roads and shaded areas of the car.
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Figure 2. Qualitative results of the Spatial Sensory Fusion (SSF) module influence. SSF has a positive contribution to blocking and

shading blurred areas. It can be clearly seen that our SSF completes the crossroads better, and the poles in the shaded areas can also be

segmented.


