
Supplementary Material for Enhancing the Power of OOD Detection via
Sample-Aware Model Selection

1. Proof of Theorem 1
Theorem. Suppose that we have access to a pre-trained model zoo denoted by M = {ϕ1, ϕ2, . . . , ϕm} and let the target
TPR level be 1 − α with α ≤ 0.5. If the test input x∗ is an ID sample that x∗ ∼ Px and s∗j = S(x∗;ϕj) is independent of
s∗j′ = S(x∗;ϕj′) for ∀j ̸= j′, then Algorithm 1 can identify x∗ as an ID sample with probability not less than 1− α.

Sketch of proof. According to Section 3.2,

pj = P
(
S(x;ϕj) ≤ s∗j

∣∣x ∼ Px

)
= F (s∗j ;ϕj) ∼ U [0, 1],

where ϕj ∈ M. Therefore, the density function of pj is given by

fpj (x) =

{
1 x ∈ [0, 1];

0 otherwise.

Then, the joint probability density of the ordered p-values p(1), p(2), ..., p(m) is

fp(1),p(2),...,p(m)
(x1, x2, ..., xm) = m!

m∏
j=1

fpj (xj) = m!

Write E =
{
∀ 1 ≤ j ≤ m, p(j) ≥ j

mα
}
. Then we have

P(E|x∗ ∼ Px) =

∫ 1

m
mα

· · ·
∫ 1

1
mα

fp(1),··· ,p(m)
(x1, · · · , xm)dx1 · · · dxm

= m!(1− 1

m
α)(1− 2

m
α)...(1− m

m
α).

Next, we prove that for any m ≥ 1 and α ≤ 0.5,

m!(1− 1

m
α)(1− 2

m
α)...(1− m

m
α) ≥ 1− α (1)

It is easy to see that Eq.(1) holds when m = 1. Suppose Eq.(1) holds for m = m0. Then for m = m0 + 1, we have

(m0 + 1)!(1− α

m0 + 1
)(1− 2α

m0 + 1
)...(1− m0 + 1

m0 + 1
α)

≥(m0 + 1)(1− α)(1− m0 + 1

m0 + 1
α) ≥ 1− α,

which implies that Eq.(1) also holds for m = m0 + 1. Hence, the proof is finished. □

2. Proof of Proposition 2
Proposition. Assuming an OOD sample x∗ ∼ Q, we consider a fixed proportion π of pre-trained models capable of
recognizing x∗ as an OOD sample. We further assume for any 0 ≤ u ≤ 1, P

(
pj ≤ u|ϕj ∈ A(x∗;M)

)
= G(u), where

1



Table 1-S. The result of model selection.
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Inactive Active
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Active V S k

m0 m1 m

Table 2-S. Supplement to Table 2 in the body of the paper: Compare ZODE-KNN detector with single-model KNN detectors. The ID
dataset is CIFAR10. All values are percentages. ↓ indicates smaller values are better and vice versa.

OOD Dataset
Method SVHN LSUN iSUN Texture Places365 Average

TPR FPR↓ AUC↑ FPR↓ AUC FPR↓ AUC↑ FPR↓ AUC FPR↓ AUC↑ FPR↓ AUC↑
ResNet18 95.00 27.97 95.49 18.50 96.84 24.68 95.52 26.74 94.97 47.95 90.02 29.17 94.57
ResNet18* 95.00 2.42 99.52 1.78 99.48 20.06 96.74 8.09 98.57 22.82 95.32 11.03 97.93
ResNet34 95.00 26.53 95.85 10.22 98.39 29.45 95.15 31.65 94.53 36.59 92.75 26.89 95.33
ResNet50 95.00 17.31 97.40 7.10 98.83 17.32 97.26 20.85 96.59 41.35 91.61 20.79 96.34
ResNet101 95.00 25.73 96.12 6.65 98.90 19.84 96.80 18.42 96.89 40.57 92.15 22.24 96.17
ResNet152 95.00 34.96 94.98 7.22 98.88 22.30 96.66 20.76 96.60 38.57 92.36 24.76 95.90
DenseNet 95.00 10.22 98.18 7.90 98.60 10.87 97.94 20.78 96.25 50.14 88.92 19.98 95.98
SwinV2-B256 95.00 14.09 98.01 24.98 96.15 61.61 89.82 0.04 100.00 1.14 99.71 20.37 96.74
SwinV2-B384 95.00 28.23 96.48 40.62 94.63 57.80 90.35 0.04 100.00 1.12 99.70 25.56 96.23
SwinV2-L256 95.00 7.87 98.68 14.59 97.35 20.50 96.69 0.02 100.00 0.71 99.82 8.74 98.51
ZODE-KNN(sub-zoo) 94.96 2.12 99.43 1.50 99.61 5.48 98.70 0.16 99.88 9.91 97.99 3.83 99.12
ZODE-KNN 95.14 0.11 99.89 2.18 99.49 5.79 98.62 0.00 100.00 0.00 100 1.62 99.60

A(x∗;M) refers to the set of active models that classify x∗ as OOD, i.e., A(x∗;M) =
{
ϕ : ϕ ∈ M, G(x∗;ϕ) = OOD

}
,

and G(u) is a distribution different from the uniform distribution U [0, 1] and satisfies (1 − π) + πG
′
(0) > 1

α . Then, as the
number of pre-trained models approaches infinity, ZODE demonstrates the capability to identify OOD samples with a high
probability.

Sketch of proof. Referring to Section 3.2, we have P(pj ≤ u|ϕj /∈ A(x∗;M)) = u for all 0 ≤ u ≤ 1. Hence, the
p-values of x∗ follow a mixture model with distribution function

F (u) = (1− π)u+ πG(u).

Suppose Table 1-S presents the model selection result using Algorithm 1. We note that Algorithm 1 successfully detects x∗

as an OOD sample if S ≥ 1. Therefore we consider the expectation of S and check

E
( S

m1

)
= E

(k × S
k

m1

)
= E

( k
m × (1− V

k )
m1

m

)
.

According to Chi [2], k
m converges to a positive value p∗(α, F ) as m → ∞ when F

′
(0) > 1

α and F
′
(0) < +∞, which

serves as the limit of the proportion of selected pre-trained models. By Theorem 1 and its lemma in Benjamini and Hochberg
[1], we have E

(
1− V

k

)
≥ 1−m0

m α = 1−(1−π)α. If m is sufficiently large, then E
(

S
m1

)
≥ p∗(α,F )(1−(1−π)α)

π ≥ 1
πm = 1

m1
.

Since P(S > 0) = 1− P(S −E(S) ≤ −E(S)) ≥ 1− P(|S −E(S)| ≥ E(S)) ≥ 1− σ(S)
(E(S))2 , if m is sufficiently large and

the variance of S, denoted as σ(S), is small enough, there exists a high probability that S will be greater than or equal to 1.

3. Supplement to CIFAR experiments
In the CIFAR experiment, we constructed a large model zoo (FPR/AUC: 1.62/99.60) that incorporated more than 20 models,
including prominent models such as ResNet, DenseNet, WideResNet, ResNext50 and SwinV2. From these, we handpicked
a sub-zoo with superior performance (FPR/AUC: 3.8/99.1) which includes 7 models displayed in Table 2.



Making special mention, our analysis incorporated three structurally different SwinV2 models with multicore architecture.
We have compiled detailed results of these SwinV2 models and added the SwinV2 models to our model zoo to provide
pooled performance metrics. In Table 2-S, we list some of the single-model results of experiments on CIFAR10, as well as
the integrated results of the large model zoo we constructed, and list the results of the sub-zoo we selected (i.e., Table 2 in
the text) for reference.

Compared with the Resnet and Densenet models, the Swinv2 model performs particularly well on the data sets Texture and
Places365. It complements other models in the model zoo to supplement image features. Compared with the sub zoo with 7
models, the large model including Swinv2 model zoo observed a significant improvement in FPR/AUC (from 3.83/99.12 to
1.62/99.60).
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